
Hl! /l il l t !

RSRE
MEMORANDUM No. 4562

ROYAL SIGNALS & RADAR
ESTABLISHMENT

QR DECOMPOSITION BASED ALGORITHMS AND ARCHITECTURES
FOR LEAST-SQUARES ADAPTIVE FILTERING

SAuthors: I K Proudler & J G McWh lrer

11AR 1'3 1992'

D

tul PROCUREMENT EXECUTIVE,
l-jr MINISTRY OF DEFENCE,
* z RSRE MALVERN,
:E WORCS.
D

0 IT" t tIor p'ihlj'.' t:le,.~ and i:1]e; tt I 'dO j dz ' ribttPn is unX.~mitod..

w
w

92-06595

it /11 -UNLIMITED

0120146 CONDITIONS OF RELEASE 30888

..................... DRIC U

COPYRIGHT (c)
1988
CONTROLLER
HMSO LONDON

..................... DRIC Y

Repots quoted are not necessarily available to members of the public or to commercial
organilsationis.

DEFENCE RESEARCH AGENCY

RSRE Memorandum 4562

TITLE: QR DECOMPOSITION BASED ALGORITHMS AND ARCHITECTURES
FOR LEAST-SQUARES ADAPTIVE FILTERING.

AUTHORS: I K Proudler and J G McWhirter.

DATE: January 1992

SUMMARY

In this memorandum we show how the method of QR decomposition (QRD) may be applied to the

adaptive filtering and beamforming problems. QR decomposition is a form of orthogonal iriangularisa-
tion which is particularly useful in least squares computations and forms the basis of some very stable
numerical algorithms. When applied to the problem of narrowband adaptive beamforming where the
data matrix, in general, has no special structure, this technique leads to an architecture which can carry
out the required computations in parallel using a triangular array of relatively simple processing ele-
ments.

The problem of an adaptive time series filter is also considered. Here the data vectors exhibit a sim-
ple time-shift invariance and the corresponding data matrix is of Toeplitz structure. In this case, the tri-
angular processor array is known to be very inefficient. Instead. it is shown how the Toeplitz structure
may be used to reduce the computational complexity of the QR decomposition technique. The resulting
orthogonal least squares lattice and "fast Kalman" algorithms may be implemented using far fewer
processing elements. These "fast" QRD algorithms are very similar to the more conventional ones but.

in general, are found to have superior numerical properties.

The more general problem of multi-channel adaptive filtering which arises, for example, in broad-

band adaptive beamforming can also be solved using the QRD-based least-squares minimisation tech-
nique. In this case the data matnix has a block Toeplitz structure which may be exploited to generate an
efficient multi-channel fast Kalman or least squares lattice algorithm. The multi-channel least squares
lattice algorithm may be implemented using a lattice of the triangular processor arrays and so it consti-
tuees a hybrid solution which encompasses the algorithms and architectures of narrowband adaptive
beamforming and adaptive filtering as special cases.

Accesion For

NTIS CRA l
DTIC TAB [

Just'fcation
0 British Crown Copyright 1992/MOD
Pubished with the permission of the By

Controler of Her Britannic Malesty's Stationery Office. Oit ibytiosil

Avalability Codes

Avail aridjIor
Dist Special

Si-I , _.'

INTENTIONALLY BLANK

CONTENTS

1 Inr o d u tion I

2 Narrow-band Beafrig............................... 1

2.1 QR Decomposition .. 1

2.2 Givens Rotations .. 4

2.3 Parallel Implementation ... 5

2.4 Square-Root-Free Version.. 8

2.3 Direc Residual Extraction... 10 t
2.6 weight freezing and flushing... 14

2.7 Parallel Weight Extraction... 17

2.8 Comparison with Recursive Modified Gram-Schmidt Algorithms................... 22

2.9 Comparison with Kalman filter algorithms................................... 23

3 Adaptive FIR Filtering... 23

3.1 Thie QRD Approach .. 23

3.2 Forward Linear Prediction... 28

3.3 Backward Linear Prediction.. 31

3.4 The QRD Least-squares Lattice Algorithm 34

3.5 The QRD "Fast Kalman" Algorithm.. 36

3.6 Physical Interpretation of Fast Algorithm Parameters 41

3.7 Weight Extraction from Fast Algorithms..................................... 45

3.8 Computer Simulation... 46

4 Wide-band Beaxnforming... 53

4.1 Multi-channel Adaptive Filters ... 53

4.2 Multi-channel Lattice .. 54

4.3 Multi-channel Fast Kalman Algorithm...................................... 56

5 References ... 59

6 Appendix.. 61

6.1 SQ/VP Narrow-band Beamformer Algorithm................................ _61

6.2 SF/PB Narrow-band Beamformer Algorithm............................ 62

6.3 SQ/PP Lattice Algorithm 63

6.4 SQ/PP QRD Fast Kalman ... 64

Figures

Figure 1 Canonical Adaptive Linear Combiner 2

Figure 2 Triangular Processor Array... 6

Figure 3 Processing Elements for Triangular QRD Array 7

Figure 4 Square-root-free Processing Elements 9

Figure 5 Frozen-mode Processing Elements 15

Figure 6 Matrix Operators ... 13

Figure 7 Square-root-free Frozen Processing Elements............................... 16

Figure 8 Updating the tiverse Triangular Matrix 18

Figure 9 QRD.Based Lattice Algorithm.. 27

Figure 10 QRD-Based Fast Kalman Algorithm 28

Figure I I QRD-based Least-squares Lattice Section................................. 34

Figure 12 "Delayed" Adaptive Filtering Lattice.................................... 35

Figure 13 Equivalent Order Updates for Joint Process Residual......................... 35

Figure 15 Fast Kalman Processors.. 39

Figure 14 QRD Fast Kalman Architecture.. 40

Figure 16 Order Recursion within the QRD-based LS Algorithm........................ 43

Figure 17 Channel Equaliser Expeiment... 46

Figure I18(a) SQIFF QRD Lattice: Effect of Eigenvalue Spread.......................... 49

Figure 18(b) QRD fast Kalman: Effect of Eigenvalue Spread 49

Figure 19(a) SQIFF QRI) Lattice: Effect of Wordlength.............................. 50

Figure 19(b) QRD fast Kalman: Effect of Wordlength................................S50

Figure 20 Comparison of Lattice and Array 52

Figure 21 Comparison of Givens Algorithms 52

Figure 21 Multi-channel Adaptive Filter ... 53

Figure 22 Lattice of Triangular Arrays55

Figure 23 Multi-channel fast Kalman Algorithm 58

iii

Tables

Table 1 Options for Implementing a Givens Rotation 10

Table 2 Eigenvalue Spread... 48

iv

INTENTIONALLY BLANK

1 Introduction.
In this memorandum we will show how the method of QR decomposition (QRD) may be applied

to the adaptive filtering and beamformng problems. QR decomposition is a form of orthogonal trian-

gularisanon which is particularly useful in least squares computations and forms the basis of some very

stable numerical algorithms.

In section 2, we show how the method of QR decomposition by Givens rotations may be applied

to the problem of narrowband adaptive beamforming where the data matrix, in general, has no special
structure. In particular, it is shown how the least squares computation may be carried out in parallel us-

ing a triangular array of relatively simple processing elements.

In section 3, we consider the problem of an adaptive time series filter for which the data vectors

exhibit a simple time-shift invariance and the corresponding data matrix is of Toeplitz structure. In this

case. the triangular processor array described in section 2 is known to be very inefficient. Instead, it is

shown how the Toeplitz structure may be used to reduce the computational complexity of the QR de-

composition technique. The resulting orthogonal least squares lattice and "fast Kalman" algorithms. de-

rived in section 3, may be implemented using far fewer processing elements. These "fast" QRD algo-

rithms are very similar to the more conventional ones [12] but, in general, are found to have superior

numerical properties.

In section 4, we consider the more general problem of multi-channel adaptive filtering which aris-

es, for example, in broadband adaptive beamforming. In this case the data matrix has a block Toeplitz

structure which may be exploited to generate an efficient multi-channel fast Kalman or least squares

lattice algorithm. The multi-channel least squares lattice algorithm may be implemented using a lattice

of the triangular processor arrays discussed in section 2 and so it constitutes a hybrid solution which

encompasses the algorithms and architectures of sections 2 and 3 as special cases. The appendix con-

tains listings of the various algorithms in an ALGOL-like code.

The content of this memorandum appears, with slight modifications, as chapter 7 - "The QR Fam-

ily" - of the book entitled "Adaptive System Identification and Signal Processing Algorithms", edited

by S. Theodoridis and N. Kaloupsidis, and published by Prentice-Hall.

2 Narrow-band Beamforming.
2.1 OR Decomposition

A narrow-band beamformer is essentially a spatial filter and the corresponding adaptive beam-

forming problem may be formulated in terms of least squares minimisation [30]. A fundamental stmuc-

tre in least squares minimisation problems is an adaptive linear combiner of the type illustrated in fig-

ure 1. This may be applied directly to the problem of narrowband adaptive beamforming. resulting in

the so-called generalised sidelobe canceller [30]. The combined output from an adaptive linear combin-

er at sample ume t, is denoted by

-- - --- - - --------- -- - - -

W1 W2 wp Aloih

TOutput e(t)

Figure 1 Canonical Adaptive Linear Combiner

e~)= x T tw+ tj

where x(t,) is the p-element (complex) vector of auxiliary signals at time tand y(tj) is the corresponding
sample of the primary signal. The residual signal power at time n is estimated by the quantity

Ej(w) = e(n) 2 (2)

where e(n) =B(n)[fe(l), e(2),.,e(n) IT (3)

and the diagonal matrix

constitutes an exponential window with 0 < 0: 1 . From equation (1) it folows that the vector of resid-

uals may be written in the form

e(n) - X(n) w +y(n) (5)

where

2

x lm FY

X(n) - B(n) -x(2) and y(n) = B(n)Y(2) (6)

xT(n)" [y(n),

X(n) is simply the matrix of all data samples received by the combiner up to time n, and y(n) is the cor-

responding vector of data in the primary or reference channel. For convenience, the matrix B(n) has sim-

ply been absorbed into the definition of Q(n). y(n) and X(n).

The least squares weight vector w(n) is simply the one which minimises En(w) and the convention-

al approach [121 to this problem involves explicit computation of the data covariance matrix

M(n) - XH(n)X(n) and, as a result, the condition number of the problem is squared. For a given finite
wordlength. this leads to a considerable loss in performance and should be avoided if possible. Note that

the computation of w(n) is based on all data received up to time n.

An alternative approach to the least-squares estimation problem is the method of QR decomposi-

tion which constitutes a form of orthogonal triangularisation and has particularly good numerical prop-

erties. It will be generalised here to the case of complex data as required. for example, in narrowband

adaptive beamforming. An (n x n) unitary matrix Q(n) is generated such that

Q(n)X(n) = *R(n) (7)
0

where R(n) is a p x p upper triangular mamx. Then, since Q(n) is unitary, we have

M(n) = X H(n)X(n) = X H(n)Q H(n)Q(n)X(n) = R H(n)R(n) (8)

so that the triangular matrix R(n) is the Cholesky (square-root) factor of the data covariance mamx

M(n).

Now, again by virtue of the unitary nature of the matrix Q(n), we have

I.- - I
ILR(n) I (n) 1,

I;e(n)I = Q(n)e(n), = o w(n) + (9)

where Lv(n) = Q(n)y(n) (10)
v(n) m

It follows that the least squares weight vector y(n) must sati sfy the equati on

3

R(n)w(n) + u(n) = o (1)

and hence En(W) = jy(n) 1 2 (12)

Since the matrix R(n) is upper triangular, equation (11) is much easier to sjlve than the Gauss nor-

mal equations [12]. The weight vector w(n) may be derived quite simply by a process of back-substitu-

tion. Equation (11) is also much better conditioned since the condition number of R(n) is identical to

that of the original data matrix X(n), the two being related by a unitary transformation.

2.2 Givens Rotations

The triangulansation process may be carred out using either Householder transformations[10] or

Givens rotations[9]. However, the Givens rotation method is particularly suitable for adaptive filtering

since it leads to a very efficient algorithm whereby the triangulansation process is recursively updated

as each new row of data enters the combiner. Assume that the matrix X(n-1) has already been reduced

to trangular form by the unitary transformation

Q(n - l)X(n - 1) = 'R(n- 1 (13)
0 J

and define the unitary matrix

Q(n - 1) Q(n- 1) o (14)To 1 (4

Clearly.

Q(n- I)X(n) Q(n- 1)! 0X(n- (15R(n-))
T (n) _ xT(n)

and hence the trangularisation of X(n) may be completed by using a sequence of (complex) Givens ro-

tations to eliminate the vector xT(n). Each Givens rotation is an elementary unitary transformation of

the form

c s o ... orr, ... k ... '= o ... Or i' ... rk' . (6= "i (16)
-s c 0 ... 0,X.. xk ... 0 . 0 x'...j

where c2 +s = 1 (17)

4

and the cosine parameter is assumed to be real without loss of generality. Clearly we require

O r i x i

c= and s= - (18)
Vp2r2 + xi'2 Jp2r2 + IXj2

The sequence of rotations is applied as follows. The p element vector xT(n) is rotated with the first

row of PR(n - 1) so that the leading element of AT(n) is eliminated, and a reduced vector x'T(n) is pro-

duced. Note that the first row of R(n - 1) is modified in the process. The (p-1)-element reduced vector

A T(n) is then rotated with the second row of PR(n - 1) so that the leading element of _xT(n) is eliminat-

ed, and so on until every element of the data vector has been annihilated. The resulting triangular matrix

R(n) then corresponds to a complete triangularisation of the matrix X(n) as defined in equation (7). The

corresponding unitary matrix Q(n) is simply given by the recursive expression

Q(n) = 0(n)Q(n- 1) (19)

where Q(n) is a unitary matrix representing the sequence of Givens rotation operations described above,

i.e.

Q(n) 0 (20)

xT(n) oTj

I: is not difficult to deduce in addition that

[Ou(n- I u(n)
O(n) v(n- 1) = Ivin-1). (21)

I y(n) _ L a(n) !!(n)

and this shows how the vector 11(n) can be updated recursively using the same sequence of Givens ro-

tations. The least squares weight vector w(n) may then be derived by solving equation (11). The solution

is not defined, of course, if n < p but the recursive triangularisation process may, nonetheless, be initial-

ised by setting R(0) = 0 and u(0) - o.

2.3 Parallel Implementation

The Givens rotation algorithm described above may be implemented in parallel using a triangular

processor array of the type illustrated in figure 2 for the case p = 4. It comprises three distinct sections

- the basic triangular array labelled ABC, the right hand column of cells labelled DE and the final

processing cell labelled F.

At time n-l. each cell within the basic triangular array stores one element of the triangular matrix

3

X31 X3 2 X 3 3 X3 4 Y3

X2 1 X2 2 X23 X24 Y2

XII X12 X13 X14 Yl

cut '"3 r3 U

E

Figure 2 Triangular Processor Array Residual

R(n - 1) and each cell in the right hand column DE stores one element of the corresponding vector

u(n-l). On the next clock cycle, the data vector [AT(n). y(n)] is input to the top of the array as shown.

Each row of cells within the basic triangular array performs a Givens rotation between one row of the

stored triangular matrix and a vector of data received from above so that the leading element of the re-

ceived vector is eliminated. The reduced data vector is then passed downwards through the array. The

boundary cell in each row computes the appropriate rotation parameters and passes them on to the right

so that the internal cells can apply the same rotation to all other elements in the received data vector.

This arrangement ensures that as the input data vector ZT(n) moves down through the array it interacts

with the previously stored triangular matrix R(n - 1) and undergoes the sequence of rotations (0(n)

described in section 2.2. All of its elements are thereby eliminated (one on each row of the array) and

the updated triangular matrix R(n) is generated and stored in the process.

As the corresponding input sample y(n) moves down through the right hand column of cells, it
undergoes the same sequence of Givens rotations interacting with the stored vector u(n-1) and thereby

6

IF xi= 0 THEN
Boundary Cell c -- l; s*-O: r -r; Tow in

Y X i ELSE

(c.s) r' - 2r2 + I Xnl;
rc- (P1r) /r'); s - (Xin/r') ;

(Cy Ut r r': out +_Cyin;

ENDIF

Internal Cell
X, xOUt -- CXin - sor

(c.s) j cs) r +__ S*Xin + cor

xout

Figure 3 Processing Elements for Triangular QRD Array

generating the updated vector u(n). The resulting output, which emerges from the bottom cell in the
right hand column, is simply the value of the parameter (x(n) in equation (21).

The function of the rotation cells is specified in figure 3 and follows immediately from equations
(16) and (18). The boundary cell includes an additional parameter y which is not required for the basic

Givens rotation but will be explained in section 2.5 where the function of the final cell F is also made
clear. Since the matrix R is initialised to zero, it can be seen that the elements on its leading diagonal
(i.e. the values of r within the boundary cells) may be treated as real variables throughout the compu-
tation and so the number of real arithmetic operations performed within the boundary cell is, surpris-
ingly, less than that required for an internal cell.

For simplicity and ease of discussion. we have assumed that all cells of the array in figure 2 operate
on the same input data vector during a given clock cycle. The critical path for the array therefore in-
volves 2p+1 cells and the maximum rate at which data vectors can be input is - 1/((2p+1)T) where T is
the typical processing time for a single cell. When Gentleman and Kung[8] first proposed the triangular
array in figure 2. they showed how it could be fully pipelined by introducing latches to store the outputs
generated by each cell before they are passed on as inputs to the neighbouring cells. The resulting systo-
lic array can achieve an input clock rate - I/T and only requires nearest neighbour cell interconnections
which is highly advantageous for VLSI implementation.

The systolic array may be generated by cutting the diagram in figure 2 along all diagonals parallel

7

to the one indicated and introducing a storage dement where each data path crosses a cut line. Note that

these cut lines also intersect the input data paths and so each input data vector enters the triangular array

in a skewed or staggered manner. Clearly, figure 2 provides a sufficient description of the parallel algo-

rithm without including the detailed pipelining and timing aspects associated with a systolic or wave-

front array. This relative simplicity means that the parallel processor can be represented more easily in

block diagrammatic form later in this memorandum.

2.4 Square-Root-Free Version

Gentleman[7] and Hammarling[11] have derived extremely efficient QR decomposition algo-
rithms based on modified Givens rotations which require no square-root operation. The essence of these

square-root-free algorithms is a factorisation of the form

R(n) f D/ 2(n)R(n) (22)

where D(n) = diag r 2 2 2

!rx I(n), r 2(n) rp(n; (23)

and R(n) is a unit upper triangular matrix. The complex Givens rotation in equation (16) then takes the

form

s* . . 0 , , ... P';d . 0 ... 0,, '... ,'r .

0 ,•(24)
.-s c o , ,6x. 0'xk 0.. ik'

where A represents an element in the diagonal matrix D1 2(n), and r. denotes an associated off-diag-

onal element from the matrix R(n). Note that each element x. of the data vector has been expressed in
the form ,tik where 6 is a scaling factor which changes value as a result of the rotation.

The square-root-free algorithm may also be implemented using the type of triangular processor

array depicted in figure 2 but with the rotation cells as defined in figure 4. In this case, the boundary

cells store and update elements of D(n) (i.e. the squares of the diagonal elements of R(n)) while the

internal cells store and update the off-diagonal elements of R(n). The function of these cells may be

deduced in a straightforward manner starting from equations (24) and (17) and noting that the values of

c and s need not be computed explicitly. Note that the scale quantities 6 are updated only at the boundary

cells and passed diagonally from one row to the next. Note also that the parameters d and 8 in each
boundary cell may be treated as real variables throughout the computation assuming that they are as-
signed real values initially. For the purposes of normal least squares processing, the 6 parameter is ini-

tialised to unity so that on input to the array. j(n) - x(n). However, as pointed out by Gentleman[7],
the 6 parameter associated with each input vector may be assigned an arbitrary initial value which serves

to weight that row of data accordingly. The square-root-free array may thus be used to perform a general

weighted least squares computation.

IF Xini =0 OR 6. - 0 THEN
Boundary Cell

ind +- [2 d: s 4- O z -xin: ut bin:

ELSE
(z) z ; d'+-- (Q3d + inlz2)

8 -- ((f2d)/d'); S -- bin (z/d');

d -d': Nut 6m;

ENDIF

Internal Cell
i
x in

Xou! +-- Xin - IZ

(sz) (sz) r - r + S* ut
r Xu

xout'

Figure 4 Square-root-free Processing Elements

As with the conventional Givens rotation algorithm, cells in the right hand column perform

the same function as those internal to the triangular array. Thus, allowing for the factorisation shown in

equation (22). these cells update elements of the vector u(n). where

u(n) = D"' 2 (n)u(n) (25)

It follows from equations (22). (25), and (11) that the weight vector w(n) is given by

PR(n)w(n) + 0(n) - p (26)

and may be obtained, as before, by a simple process of back substitution. Figure 4 specifies the cell func-

tions required for one particular version of the square-root-free algorithm. This version, which requires

2 multiplications and 2 additions per cycle to be performed in each internal cell, was first suggested by

Golub and reported by Gendeman[7]. We have found it to be particularly stable and accurate throughout

an extensive programme of finite wordlength adaptive filtering and beamforming computa-

tions[25](32. These observations are supported by the work of Ling. Manolakis and Proakis[15] who

derived an equivalent algorithm (the "error-feedback" algorithm) based on a recursive form of the mod-

ified Gram-Schmidt orthogonalisanon procedure - see section 2.8.

The "square-root-free" algorithm described above is in fact an algorithm for calculating the re-

9

Method of Calculation Method of Application
Using square-roots (SQ) Feedforward (FF)
Square-root-free (SF) X Feedback of output (FB)

Feedback of stored parameter (MFB)

Table I Options for Implementing a Givens Rotation

quired planar rotation. In the QRD-based least squares minimisation problem these rotations also have
to be applied to various vectors. In section 2.3 the "'natural" implementation of the Givens rotation (in-
volving the computation of square-roots) was applied to various vectors in a feedforward manner: the

two components of the rotated vector are calculated independently on the basis of the two input com-
ponents. The square-root-free algorithm presented above applies the rotation in a feedback mode: one

output is now dependent on one input and the other output. It follows that there exists another feedback

algorithm where the parameter that is fed back is the stored quantity r - see figure 4 - rather than the

cell output iout'

Combined with the two methods for calculating the rotation parameters, the feedforward/feedback
choice results in six different variations: see table 1. The computer simulations of section 3.8 show that.
of these four possible variations, the one that is equivalent to the RMGS error-feedback algorithm

(square-root-free with feedback) performs the best in terms of numerical stability. It is worth emphasis-

ing that the basic architecture (figure 2) is not affected by the choice of rotation technique so that the
only difference between the various options is a change of PE's.

2.5 Direct Residual Extraction

In many least squares problems, and particularly in adaptive noise cancellation, the least-squares
weight vector w(n) is not the principal object of interest. Of more direct concern is the corresponding

residual, since this constitutes the noise-reduced output signal from the adaptive combiner[32]. In this

section, we will show how the "'a-postenori" least squares residual

e(n. n) - xT(n)w(n) + y(n) (27)

which depends on the most up-to-date weight vector w(n). may be obtained directly from the type of
processor array described in section 2.3 without computing w(n) explicitly[18].

In order to proceed, it is necessary to consider the structure of the nxn matrix 0(n) which.

from equation (20), may be expressed in the form

AWn 0 A(n),
0(n) 0 I o (28)

0bT(n) 9 '(n)

10

...

where A(n) is a p x p matrx. #(n) and b(n) are p x I vectors and 'Yn) is a scalar. Now O~(n) is given by

O~(n) Gil 3(n) (29)

where the G1 are elementary nxn rotation matrices of the form

'Fl

c.(n)... *(nGi()=.s(n) (i 1,213.... P) (30)

-si(n) . . . c1(n)

and all off-diagonal elements are zero except those in the (i.n) and (n~i) locations. It follows directly that

p
,Kn) = j H c(n) (31)

i.e. yKn) is the product of the cosine terms in the p rotations represented by (5(n). Multiplying both sides

of equation (20) by (Hn)and noting that the matrix O~(n) is unitary, it is now easy to deduce that

x T(n) =aHn)R~n)(2

and similarly, from equation (21) we have

y(n) - aiH(n)u(n) +y'~n)cz(n) (33)

Substituting equations (32) and (33) into equation (27) leads to the expression

e(n, n) - it Hn)R(n)w(n) + lH (n)y~n) + -fn)cx(n) (34)

and. from equation (11). it follows immediately that

e~n, n) - -fn)a(n) (35)

Now, as noted in section 2.3. when the conventional Givens rotation algorithm is employed, the

parameter o~n) is generated quite naturally within the triangulanisation process and simply emerges

I I

from the botom cell of the right hand column in figure 2: because of its relationship with the a-posteriori

residual e(n. n). as given in equation (35), the parameter a(n) is known as the angle-normalised resid-
ual. The scalar -Kn), as given by equation (31), may also be computed very simply. The product of co-

sine terms is generated recursively by the parameter y as it passes from cell to cell along the chain of

boundary processors. The simple product required to form the a-posteriori residual as given in equation

(35) is computed by the final processing cell F in figure 2.

The direct residual extraction technique obviously avoids a lot of unnecessary computation pro-

vided that the weight vector is not required explicitly. As a result, the overall processing architecture is
greatly simplified. There is no need for a separate back-substitution processor or any sophisticated con-

trol circuitry to ensure that the contents of the triangular array are input to the back-substitution proces-

sor in the correct sequence. Consequently, it is much easier to maintain a regular pipelined data flow. A
less obvious. but arguably more important advantage of direct residual extraction is the improved nu-

merical stability which it offers. This derives from the fact that computing the weight vector explicitly
requires the solution of a linear inverse problem which may be ill-conditioned in circumstances where

the optimum weight vector is not well defined. The least squares residual, however, is always well de-

fined and can be computed reliably. Note, for example, that the correct (zero) residual is obtained even
during the first few processing cycles when the data matrix is not full rank and the corresponding weight

vector cannot be uniquely defined. This type of unconditional stability, which may be contrasted with
that of the traditional RLS algorithm (see Haykin [12]) and avoids the need for "persistent excitation",

is extremely important in the context of real time signal processing.

The a-posteriori residual may be computed in a similar manner when the square-root-free algo-

rithm is employed. The square-root-free algorithm delivers from the bottom cell in the right-hand col-

umn a scalar (n) given by

b /2(n)e(n) - a(n) (36)

where V2(n) is the scaling parameter appropriate to the pth row at time n and it has been assumed that

b(n) is imtialised to unity on input to the array. From equations (35) and (36) it follows that

e(n, n) = -(n)6 / 2(n) e (n) (37)

where yn) is the product of cosine terms which arise in the conventional Givens rotation algorithm.

However, 6(n), as computed by the boundary processors for the square-root-free algorithm, is simply

the product of all the c terms and it can easily be shown that thisis equivalent to the product of the con-

ventional cosine parameters squared. Thus,

6(n) - y2(n) (38)

and e(n, n) - b(n)e(n) (39)

12

Hence the a-posteriori residual e(nn) may also be obtained directly from the square-root-free proc-

essor array, using a final multiplier cell F as illustrated in figure 2.

A second form of residual, which occurs naturally in least squares algorithms such as the least

squares lattice (see Haykin [12]) is the a priori residual, denoted e(n, n - 1). Defined in terms of the

previously computed weight vector wY(n-l) and the latest data [xT(n), y(n)], it takes the form

e(n, n - 1) = xT(n)w(n - 1) + y(n), (40)

This residual may also be obtained directly from the triangular processor array as we now show. By sub-

stuting the decomposition for (5(n) given in equation (28) in the time update relation (equation (20))

we have

bT(n)PR(n - 1) + yn)xT(n) = 0 (41)

Eliminating the vector xT(n) between equations (40) and (41) we find

e(n, n - I) - (- bT(n)OR(n - l)w(n - 1) +)(n)y(n))/y(n) (42)

Again by using the decomposition given in equation (28). this time with equation (21). an other

relationship can be obtained:

bT(n)pu(n - 1) +'%n)y(n) = a(n) (43)

By eliminating the term y(n)y(n) between equation (42) and (43) we have that

e(n, n - I) - (- bT(n)OR(n - l)w(n - 1) + a(n) - bT(n)ou(n - 1))/y(n) (44)

and. from equation (II), it follows immediately that

e(n. n - I) a ctn)/y(n) (45)

Thus the a priori residual is computed from the same quantities as the a postenori residual. It follows

immediately from equations (35) and (45) that they are related by the expression

e(n. n) - y2 (n)e(n, n - 1) (46)

Note that by eliminating the term y(n) between equations (35) and (45) we find that

on) = .e(n, n - l)e(n. n) (47)

13

so that the angle normalised residual ct(n) can be viewed as the geometric mean of the a priori and the

a postenori residuals.

From equations (38). (39) and (46) we see that

e(n) = e(n n - 1) (48)

so that the scalar which emerges naturally from the bottom cell in the right-hand column of the square-

root-free processor array is the corresponding a priori residual. Finally, note that

e(n. n) 4

6(n) = 9(n) = e(n. n-) (49)

and hence we see that 6(n) is equal to the so-called likelihood variable (see Haykin [12]).

2.6 Weight freezing and flushing

It has been shown that if a data vector [_T(n), y(n)] is input to the triangular processor array

in figure 2. the corresponding a-posteriori least squares residual e(n.n) emerges from the final cell F. In

order to achieve this result, the array performs two distinct functions:

(1) It generates the updated triangular matrix R(n) and corresponding vector u(n) (or D(n), R(n)
and u(n) for the square-root-free algorithm) and hence, implicitly, the updated weight vector
w(n).

(2) It acts as a simple filter which applies the updated weight vector to the input data according

to equation (27).

If the array is subsequently "frozen" in order to suppress any further update of the stored values, but

allowed to function normally in all other respects, it will continue to perform the filtering operation

without affecting the implicit weight vector w(n). Thus, in response to an input of the form [xT , y]. the

frozen network will produce the output residual

e - x T w(n) + y (50)

Equation (50) may be verified directly by considering the frozen array as a combination of basic

matrix operators. Consider first the basic triangular array ABC in figure 2. In frozen mode, the boundary

and internal cells perform the reduced processing functions defined in figure 5. Now consider the effect

of the simplified network upon a row vector aT, input from above in the usual manner. This will give

rise to a column vector Z which emerges from the right. It is straightforward to verify that the input vec-

tor 3 is related to the output vector z by means of the matrix transformation

x - RTz (51)

14

Boundary Cell Internal Cell

X, I x~n

z v z

r

L

z *-- xmn /r Xout +- Xin - zr

Figure 5 Frozen-mode Processing Elements

AB D

R
T u

C
E

1T

,Y - NT1u
Figure 6 Matrix Operators

where R is the upper triangular matrix stored within the array. For example. it is clear that

Z, = xl/r 1 and z2 ' (x 2 -r 1 2z)/r 22 (52)

i.e xi = r11 z and x 2 = r12 z +r 22z2 (53)

Assuming that R is non-singular (i.e. no diagonal element of R is zero) it follows that

z = R-Tx (54)

and so the frozen triangular array may be regarded as an R-T matrix operator as depicted schematically

in figure 6.

15

Boundary Cell Internal Cell

x.n xIn

z r

d

Z <--- Xn Xou t +_ Xin - rz

Figure 7 Square-root-free Frozen Processing Elemen

Now consider the right hand column of cells DE in figure 2. It is easy to show that, in frozen

mode. the effect of this array upon a column vector x input from the left and a scalar y input from the

top is to produce the scalar output y - xTu which emerges from the bottom cell. The vector x also emerg-

es unchanged from the right as depicted in figure 6. It follows immediately that if the network in figure

2 is frozen at time n. its effect upon a vector [_xT.y] input from the top is to produce the scalar output

y - xTR - I(n)u(n) which emerges from the column of internal cells DE. From equation (11). it can be

seen that this is precisely the frozen residual defined in equation (50).

When the square-root-free algorithm is employed, the array in figure 2 may be frozen very simply

by setting the forget factor P = I and initialising the parameter 8 to zero for any input vector which is to

be processed in the frozen mode. As pointed out in section 2.4. this has the effect of assigning zero

weight to that vector within the overall least squares computation and so the processing does not affect

any values stored within the array. This property can be verified quite easily by inspecting the square-

root-free cells in figure 4 and the resulting operations for the frozen cells are shown in figure 7. It fol-

lows from the discussion above that if a vector [kT , y] is input to the top of the frozen square-root-free

array at time n. the output which emerges from the internal cell E will be y - xT R (n)u(n) and from

equation (26) it can be seen that this is again the frozen residual defined in equation (50). Note that the

parameter &,, for the final processing cell must be set equal to one to avoid suppressing the output re-

sidual from the frozen square-root-free network if this technique is used.

Having established that the function of a frozen triangular array is given by equation (50), it

is easy to see how the least squares weight vector, if required. may also be obtained without performing

a back-substitution. Let h, denote the p element vector whose only non-zero element occurs in the ith

location: it follows that the effect of inputting the sequence of "impulse" vectors [b. 0] (i=l.2.....p) to

the frozen array is to produce the sequence of output values w.(n) (i=1.
2p) and so the weight vector

w(n) may be extracted from the array without the need for any additional hardware. This technique.

which amounts to measuring the impulse response of the system. is generally referred to as "weight

flushing'[32],

16t

2.7 Parallel Weight Extraction
The technique of weight flushing presented in section 2.6 requires that the adaptive filtering be

temporarily suspended whilst the sequence of impulse vectors is fed into the array. A pP order system
would therefore have to suspend its data processing for p time instants. Although it is conceivable that
this weight flushing process could be carried out at a higher clock rate, in between the processing of the

data. in a high data rate environment this option is unlikely to be viable and an alternative technique is
required. As we show below, the weight vector can be produced in parallel with the adaption process,
in several ways, by the addition of extra hardware.

Before describing how the weight vector can be generated, we first consider an important property
of the Q matrix upon which the parallel weight extraction techniques (and also some other important
techniques like MVDR beamforming [201) depend. We have seen, in section 2.2, that the matrix (O(n)
updates the triangular matrix R(n - 1) to R(n) by rotating in the new data vector at time n. Rather sur-

prisingly. the matrix (5(n) can also be used to update the triangular matrix R-H(n - 1) to R-H (n). Con-
sider the following identity:

H [0-'iR-H(n - 1)

OT

IR-H(n - i iT(n)
Let O(n) 0 = 0 (56)

OT
i zT(n)

so that. by means of equations (20) and (55), we have:

T(n)

RH(n) O ol 0 l (57)

ST(n)

and clearly. T(n) - RH(n) (58)

Thus equation (56) becomes:

i- R-H(n - 1), 1R-H(n):

O(n) 0 - 0 (59)

OT zT(n)

17

1(n)

array of square PEPs

---- Standard QRD Array

SAdditional PE's for
CalculatingR

- H

zT(n)

Figure 8 Updating the Inverse Triangular Matrix

LH
and we see that the same rotations that update the mamx R also update the matrix R- .

Recall from the description of the QRD systolic array in section 2.3 that the sine and cosine pa-

rameters that define the rotation matrix 0 are passed from left to right across the array. Thus the matrix

R- H can be calculated by appending an array of internal processing elements to the right of the basic

QRD array: the QRD array stores R and outputs the rotation parameters that specify 0 as R is updated

from time instant to time instant: the rotation parameters are then used by the new array which stores

and updates the matrix R- H by rotatng it against a vector of zeros. The matrix R- H is lower triangular

and hence the new array will also be lower triangular (see figure 8).

Armed with this property of the 0 matrix, we can now show how the weight vector can be calcu-

lated in parallel with the adaption process [29]. Consider the following augmented data matrix:

X+(n) = rX(n) y(n) (60)

The upper-mangular matrix resulting from a QR decomposition will then have the form:

[R(n) u(n),
R+(n) = 1(n), (61)

where ein) = y(n) is the square-root of the filtering error power for y(n). It is easy to show that the

inverse of an upper triangular matrix is another upper triangular matrix: thus let

R-i(n) = T'(n) gn) (62)
ot(n)

18

where T'(n) is a (p+l)x(p+l) upper triangular matrix. s(n) is a p-dimensional vector, and t(n) is a sca-

lar. Then

T'(n) s(n) 'R(n) u(n) T'(n)R(n) T'(n)u(n)+E(n)s(n) (63)
R+ (n)R+(n) = QT t(n) T E(n) o

T t(nn) (n)

hence R I(n) = IR(n) -C1(n)R-1(n)u(n), - R-1(n) Cl(n)w(n) (64)
E-(n) i(n)

where we have used equation (11) to identify the presence of the least squares weight vector w(n). Thus

we can obtain the weight vector w(n) directly from the right-hand column of the inverse of the augment-

ed triangular matrix R.(n) (or equivalently, the complex conjugate of the bottom row of R_.H(n)).

The matnx R_ H(n) can be calculated as shown in figure 8 provided we ensure that the QRD array,

on the left-hand side of figure 8. is solving the augmented problem. This requires that the data vector

being fed into the array, at time n, is xT(n) y(n) and hence that the QRD array is now of dimension

(p+l)x(p+l). The adaptive filtering residual is still available with this architecture since the

(p+ 1)x(p+ 1) QRD array can be thought of as consisting of a pth order adaptive filter processor (as shown

in figure 2) with the multiplier cell (F in figure 2) replaced by an additional circular processing element.

Clearly this additional circular processing element can be modified, if necessary, to calculate the adap-

tive filtenng residual.

The parallel weight extraction technique described above is based on the fact that the rotation ma-

mx ((n). as calculated by the basic QRD array on the left-hand side of figure 8, can be used to update

the matrix R H(n - 1). An alternative technique for generating Q(n) [1][21][22] leads to a different ar-

chitecture for calculating the optimum weight vector. This technique relies on the fact that the rotation

matrix O(n) is completely specified by the relevant p rotation angles (see section 2.2) and hence may

be reconstructed from knowledge of these angles. As we show below, the relevant angles can be recov-

ered from the bottom row of the matrix 0(n): further more, this row vector can itself be calculated, in-

directly, based on knowledge of the matrix R-H (n - 1).

From equations (28) and (29), we have

T ib(n)
((n)tn = O (65)

I(n)_

19

Ai

P P T

- c, -s; -s;, PT, c (66)
:~ lC. 5 cp. f]~ 0 [1I

S i-2 i-1

where the s,'s and ci's are the sines and cosines of the relevant Givens rotations that compose (O(n) and

the "pinnrng" vector n, is an n-dimensional vector such that

= , 0 o, 1 r (67)

These sines and cosines uniquely determine the matrix ((n) and can be recovered from b(n) and y(n)

in the following orthogonal manner. A sequence of Givens rotations is used to successively annihilate

elements of b(n) starting from the top and working down until the pinning vector 11, is produced (see

equation (65)).

p
Let y = H c,, then the first rotation takes the form

i2

c s* si = i0 (68)5:- c :yci i gi (

and it is easy to show that

g= ±Y c = ±C1 s = +s1 (69)

The ambiguity of sign is immediately resolved by recalling that in the construction of Qp(n) the rotation
angle is always chosen such that the cosine is positive. Having applied the first rotation to determines,

and cI, the vector in equation (66) takes the form:

P oV

.0. -s c, ...0 - c, -s;. OT H c, (70)
i -i 3 i-2

and so the next Givens rotation serves to compute s2 and c2 in a similar manner, and so on. Note that it

is also possible to recover the rotation angles that define Op(n) from its right-hand column. In particular,
we have

20

Si

Cl2

Qp(n)rn = SP I ci (71)

p
i I I

so that the sines and cosines may be recovered by applying a sequence of Givens rotations which anni-

hilated the elements of the vector a(n) starting from the bottom and working upwards. In this case the

pair (sp, cp) are generated first and (s1 , C,) last.

Having established that the matrix w(n) can be reconstructed from knowledge of the quantities

b(n) and y(n), we now proceed to shown how these two quantities can be calculated other than from

(5(n) itself. Note from equation (41) that

b(n) = -0-ly(n)R-T(n - l)x(n) (72)

Thus given R-T(n - 1) and the new data at time n (x(n)). we may use equation (72) to calculate the

vector b(n)/-j(n). The value of 'j(n) can easily be found from the fact that w(n) is orthonormal and

hence

b(n) 2 + -?(n) = 1 (73)

or jRn) = [b(n)/y(n) 2 + I] -2(74)

Having calculated b(n) and Kn) by this indirect method, we can then calculate (0(n) as above and

proceed to update the matrix R -
, without the need to explicitly calculate R. Clearly, the augmented

data matrix R+H(n) can also be updated in this way (with suitably redefined quantities) thus allowing

the weight vector w(n) to be calculated without the need for the triangular array that performs the QR

decomposition of the augmented data matrix. Once the optimum weight vector is known, the adaptive

filtering residual could of course be calculated using equation (27) but, since the weight vector may not

be well defined this method is less robust than the direct extraction one (see section 2.5).

Another method for extracting the weight vector without interfering with the adaption process also

relies on the structure of the (0 matrix. From equation (72) we see that if a vector _XT(n) is annihilated

21

by Givens rotations against a triangular matrix OR(n - 1) then the bottom row of the 0 matrix contains

the term 1 -R-T(n - l)x(n). Now from equation (11) we have that:

w(n) - -R-(n)u(n) (75)

Hence if we use Givens rotations to annihilate the vector VT(n) by rotation against the matrix RT(n)
then the bottom row of the composite rotation matrix will contain the term

R- (n)tz(n) = -w(n) (76)

i.e. the negative of the least squares weight vector. A systolic array for implementing this algorithm can

be found in reference [31].

2.8 Comparison with Recursive Modified Gram-Schmidt Algorithms

The square-root-free algorithm and architecture with direct residual extraction as described in sec-

tions 2.1 to 2.5 was obtained independently by Ling. Manolakis and Proakis [15] based on the method

of modified Gram-Schmidt (MGS) orthogonalisation. The MGS algorithm operates on a fixed block of

data and is essentially non-recursive. It solves the least squares problem by applying a sequence of lin-

ear combinations to the columns of the block data matrix X (n) and transforming it into a matrix
X' (n) whose columns are mutually orthogonal. The complete transformation may be represented by

means of an upper triangular matrix whose elements correspond to the triangular matrix R (n) which
would have resulted from applying a QR decomposition to the data matrix X (n). The process is ex-

tended to include the vector of samples y(n) in the primary channel and hence extract from it the com-
ponent which is orthogonal to the columns of X (n). The bottom element of the resulting vector then

corresponds to the a-posteriori least squares residual at time n. The QR decomposition and MGS tech-

niques are clearly related except that the former applies an orthogonal transformation to the data matrix

X (n) in order to produce an upper triangular form whereas the latter applies an upper triangular matrix

transformation to X (n) in order to produce a matrix with orthogonal columns. Also. the QRD tech-
nique may be applied in a convenient row-recursive manner using a sequence of elementary Givens ro-
tations. The most important contribution of Ling. Manolakis and Proakis was to show how the MGS

algorithm could also be updated one row at a time thereby generating the recursive modified Gram-

Schmidt (RMGS) algorithm which may be implemented using a triangular processing architecture sim-

ilar to that in figure 2.

Motivated by the desire to update the stored triangular matrix elements directly rather than as a

ratio of other updated terms which occur more naturally in the RMGS approach, they manipulated their

algorithm further. The resulting update equations were found to involve an important element of feed-
back which. leeds to an improvement in numerical stability. It is interesting to note that the error feed-
back RMGS algorithm derived by Ling, Manolakis and Proakis [151] is identical to the form of square-

root-free Givens rotation algorithm defined in figures 2 and 4 1141. It was this relationship which led us
to refer to the basic operation in figure 4 as the square-root-free with feedback (SF/FB) Givens rotation

22

and to identify the underlying feedback mechanism which is inherent to it.

2.9 Comparison with Kalman filter algorithms

The QR decomposition algorithms for recursive least squares processing as defined in figures 2, 3

and 4 operate directly on the basic data matrix X (n) as opposed to the data covariance matrix M(n)

and, as noted previously, this has significant numerical advantages. It was also shown in equation (8)

that the upper triangular matrix R (n) which is stored and updated within the processor array is analyt-

ically identical to the Cholesky square-root factor of the data (or information) covariance matrix. In the

nomenclature of Kalman filtering, the QRD algorithm constitutes a numerically stable form of square-

root information Kalman filter with unit state-space matrix.

It has recently been shown by Chen and Yao [51 how the algorithm and triangular array architec-

ture may, in fact, he extended to the case of a general square-root information Kalman filter with arbi-

trary state space matrix. Gaston et al [61 have also shown how the triangular QRD array may be used as

the core processor in a general square-root covariance Kalman filter. Note that in Kalman filtering no-

menclature the term "covariance" does not refer to forming or using the data covariance matrix M (n).

Instead, it denotes an algorithm which is based on updating the matrix M- I (n) (or its Cholesky square

root factor R-I (n) in the present context) since this specifies the covariance of the weight vector esti-

mate. In the special case of unit state-space matrix the covariance Kalman filter reduces to a least

squares estimation algorithm which makes use of the well-known matrix inversion lemma to perform

successive rank-one updates of the matrix M- 1 (n). This is often referred to as the "Recursive Least
Squares" (RLS) algorithm although it is fundamentally different from the QRD-based recursive least

squares technique described in this memorandum. For example. as is often pointed out "persistent ex-

citation" is essential if the traditional RLS algorithm is to retain numerical stability due to the I /P term

which occurs in the associated Riccati equation. However this problem does not arise with the QRD al-

gorithm described in sections 2.1 to 2.5. It would seem sensible, then. to refer to the traditional RLS and

the alternative QRD techniques as the "covariance" and "square-root information" recursive least

squares algorithms respectively.

Finally, it is worth noting that several authors [I][21][22] have recently developed stable "square-

root covariance" least squares algorithms and architectures based on the technique illustrated in figure

8 for updating the "square-root covariance" matrix R_ 1(n). Their technique, however, makes clever

use of a pinning vector to avoid storing and updating the "square-root information" matrix R (n) ex-

plicitly and only requires a single tiangular processor array as described in section 2.7. It is not clear

how their method would extend to the general "square-root covariance" Kalman filtering problem or

how it relates to the "square-root covanance" Kalman filter architectures proposed by Gaston et a [6].

3 Adaptive FIR Filtering.
3.1 The ORD Approach.

In section 2 we saw how an adaptive linear combiner could be applied to the problem of narrow-

band adaptive beamforming. The same linear combiner could be used to construct an adaptive FIR fil-

23

ter. In this case, the combined output at time tj is given by the equation

p-i
e(t i) _ xT(ti)w + Y(ti) - : wjx(t i j) + y(ti) (77)

j=0

which is identical to the narrow-band beamformer case (equation (1)) except that the input vector a(tj)

now exhibit i high degree of time-shift invariance. This property manifests itself in the fact that the

"data matrix" (Xp(n) of equation (79)) has a Toeplitz structure i.e. each row of the matrix is obtained by

shifting the previous row one column to the right and introducing one new data sample. Various algo-

rithms have been devised that take advantage of this redundancy and so reduce the computational load.

for a ph order filter, from O(p 2) to O(p) arithmetic operations per sample time (see Haykin [12]). The

common basis for these fast algorithms is an efficient technique for solving the least squares linear pre-

diction problem. The concepts of forward and backward linear prediction must both be introduced for
this purpose. The adaptive filtering problem can then be solved using quantities already calculated dur-

ing the linear prediction stages. Unfortunately the majority of these fast algorithms exhibit some form

of numerical instability although much work has been done to overcome the numerical problems and

various rescue procedures have been developed - see [12].

As we have seen, it is possible to solve a least squares minimisation problem using the technique

of QR decomposition. Extensive computer simulations of this algorithm[32] have shown the QRD-

based least squares minimisation algorithm to have excellent numerical properties. However, since the

recursive QRD algorithm presented in section 2 is designed to solve a general recursive least squares

minimisation problem, it requires Op) operations per sample time to generate the solution to a pO or-

der adaptive filter problem. A QRD-based algorithm which is designed for the special case of adaptive

filtering and only requires O(p) operations per sample time is thus of considerable interest

[13][171126][33]. In order to simplify the analysis we consider only real signals. The extension to the

complex case is straight forward and indeed the algorithms presented in the appendix are for complex

signals.

In a least squares adaptive filter of order p, the set of p weights' wp(n) at time n is chosen in order

to minimise the sum of the squared differences between a reference signal y(n) and a lnear combination

of the p samples from a data time series x(tn.i) (0 r i < p-l). Specifically. the measure to be minimised

is Okp(n) where:

CP(n) - Xp(n)wp(n) + y(n) (78)

I. In this section we append a subscript to all variables to indicate the order of the problem being solved

24

Ix(l) x(O) x(2 -p)
Xp~n-- ~n~ (2) x(l) ... 0(3p) ,(9

,x(n) x(n-)... x(n-p +1)

and

y(n) = (l) ... y(n) T (80)

Compared with equations (5) and (6). we see that equations (78) to (80) constitute a standard least

squares miirsation problem except for time-shift invariance of the data. We could therefore proceed

to solve this least squares minimisation problem via the QR decomposition technique described in sec-

tion 2. 1. In order to do so we must determine an orthogonal matrix Qp(n) that transforms the matrix

Xp(n) into upper triangular form2 and use the same matrix Qp(n) to rotate the reference vector y(n). i.e.

Qp(n) Xp(n) = Rp(n) (81)

0

and Qp(n) y(n) u (n) (82)
v p(n)

It should be noted that once Qp(n) has been found, the filtering problem has effectively been

solved. Knowledge of Qp(n) means that yp(n) is known. It also allows the angle normalised residual

c P(n) - the last component of the vector vP(n) - to be calculated and thus the least squares residual may

be found (see section 2.5). The O(p 2) QRD-based algorithm for the solution of a pth order least squares

minimisation problem as described in section 2 has many desirable features. It operates in the "data do-

main" and has a time-recursive formulation with time-independent computational requirement and a

regular parallel architecture. However the time shift redundancy in the adaptive filtering problem can

be used to improve the method further by reducing the computational load from O(p2) to 0(p). The de-

velopment of fast QRD algorithms for adaptive filtering is based, almost entirely, on the principle of

constructing partially triangularised matrices from known quantities and then finding a set of rotations

to complete the process. We recall that this was also a key element in the derivation of the time-recursive

algorithm in section 2.2. The solution at time n was generated by rotating the new input data for time n

into the upper triangular matrix associated with the solution at time (n-I).

Recall that the set of rotations, Qp(n). required to solve the adaptive filtering problem are entirely

dependent on the matrix X,(n). The matrix Xp(n) can. however, be built up in an order recursive manner

2, In the following, we use shading in order to emphasise the structure of the non-zero elements of a

matrix

25

by adding extra columns which, because of its Toeplitz structure, consists of one new element and a

time-shifted version of the previous column. Consider the following decompositions:

x(I) ... x(2-p)
Xp(n) B(n) (83)

-x(n) ... x(n -p +)

Xp_ 1(n) yb _ 1(n) (4
= pg ~ n (84)

= Z (85)

y I(n) 1)

where 3 y_ (n) =B(n -1) x(2) ..., x(n) T (86)

,b(n) = B(n)x(- p +2)..x(n- p+ 1) (87)

T

and z =
n x(O) x(-p + 2) (88)

Note from equation (84), that if we had already determined the rotation matrix Qp 1 (n) which mangu-

larises the matrix Xpj(n). we could use it to partially triangulanse the matrix Xp(n). In doing so we

would also have to rotate the vector yb (n) but these are exactly the steps required in the QRD-based
- p-

solution of the (p-)St order backward linear prediction problem.

In the (p- l)m order backward linear prediction problem at time n, an estimate of x(n-p+ 1) is formed

from a linear combination of the data I x(n) x(n-p+2) 1. The solution to this problem depends on the

tnangulansation of the matrix Xp.1 (n) and the transformation of the reference vector yb (n). Hence,

knowing the solution to the (p-l)U order backward problem at time n would allow us to construct the
partially triangularised matrix Q. _ (n)Xp(n) from known quantities and thus save a large amount of
computation. Ths partially tilangulansed matrix could then : transformed into the triangular matrix

RP(n) by a sequence of Givens rotations.

Equation (85) allows another partially tiangulaised version of Xp(n) to be constructed, this time

using quantities from the (p-l)st order forward linear prediction problem. The (p-I)' order (forward)

3. Note that the subscnpt 'p' attached to the vector yf is superfluous and that yf Yp - ' etc. Its use

is merely to preserve symmetry with the vector y for which the subscnpt is necessary

26

FORWARD FORWARD

ORDER p- I | ORDER p
TIME n _J . jTIME n

ORDER .p I ORDER pI
TIME(10-1) I TIME n

Figure 9 QRD-Based Lattice Algorithm

linear prediction problem. at time n. is defined as the estimation of x(n) based upon the data
Ix(n-l) x(n-p+l)I. This involves the triangularisation of the matrix X.I(n-1) and the transforma-

tion of the relevant reference vector yp (n). We could then use the decomposition given in equation

(85) to generate a partial triangularisation of the matrix Xp(n) from known quantities. The formation of

the triangular matrix Rp(n) could then be achieved very easily using a sequence of Givens rotations.

It is clear that the two linear prediction problems of order (p-I) are intimately connected to the

problem of determining a minimum set of rotations which produce the triangular mamx Rp(n). Howev-
er. the triangulansation of Xp(n) is central not only to the adaptive filtering problem but also to the pth

order linear prediction problems. The rotations which transform the matrix Xp(n) into RP(n) are used

to solve the forward problem at time (n+l) and the backward problem at time n. With a suitable time
delay, we can therefore construct an order recursive algorithm for linear prediction and adaptive filter-

ing (figure 9).

It is also possible to develop another type of QRD-based fast algorithm. From the discussion above

it is clear that we have a fast method for transforming RP 1(- 1) into R,(n) via equation (85). This

technique allows us to transform the matrix Qp _ (n - 1) into Qp(n) (i.e. we have a time and order up-

date). Equation (84) constitutes a method for transforming RP(n) into RP _ (n) and hence Qp(n) into

Qp _ ,(n) (i.e. an order down-date). Thus by combining these two transformations we can achieve an

overall time update for the rotation matrix QP (figure 10). This transformation does not lead directly to

the construction of a fast algorithm since having to calculate the various Q matrices explicitly would

require (p2) operations and does not represent a reduction in the computational requirement. However

we have already seen that the value of this matnx can be inferred from knowledge of its right-hand col-

umn (section 2.7). Clearly the transformations that update the matrix Q. will also perform a time update

for this column vector. Then. because we are now dealing with a vector rather than a matrix, the number

27

i i

Op -1(n - 1) Qp_ (n)[

Figure 10 QRD-Based Fast Kalman Algorithm

of computations required to perform this type of update is O(p) and a "fast" algonthm results.

Traditionally "fast" adaptive filtering algorithms fall into two classes: the least-squares lattice a]-

gorithms and the "fast Kalman" algorithms. Both types of algorithm solve the pOh order linear prediction

problem in O(p) operations. The least-squares lattice algorithms do this by solving all of the lower order

problems in sequence, whereas the "fast Kalman" algorithms concentrate on a problem of given order

and achieve the reduction in computational load by using the time and order update / order downdate

technique. Not surprisingly, the two classes of algorithms have tended to be quite different: the fast Kal-

man algorithms usually calculate the transversal filter coefficients explicitly, whereas the lattice algo-

nthms deal directly with the filter residuals (errors) and calculate reflection coefficients. The fast Kal-

man algorithms also tend to require fewer arithmetic operations than the lattice algorithms although

both are linear in the problem order. The level at which the two different algorithms can he pipelined is

different - the lattice algorithms having a higher degree of concurrency. It is also worth noting that the

data downdating step which is implicitly required by the fast Kalman algorithms gives cause for concern

with regard to numerical stability.

Based on the above classification, we refer to the two fast algorithms derived in this memorandum

as the QRD-based least-squares lattice algorithm (figure 9) and the QRD-based fast Kalman algorithm

(figure 10). It should be noted. however, that this lazie algorithm does not calculate the transversal filter

coefficients explicitly: instead it generates the required filter output using the QRD-based method of

"direct residual-extraction" discussed in section 2.5. The QRD-based fast Kalman algorithm is also un-

usual in that it quite naturally produces the solution to all lower order problems whereas fast Kalman

algorithms are usually seen as being of "fixed order". This property is a natural consequence of using

the QRD technique (see section 3.6). We begin the detailed derivation of these fast algorithms by con-

sidering the problem of determining an efficient method for the solution of the pI order forward linear

prediction problem.

12 Foward Unkw Predidion

The pth order forward linear prediction problem. at time n. requires the determination of the vector

of filf fcoefficietswt (n) [T
ow [wp o(n) wp, P- i(n)] that minimises the total prediction error

28!

cf(n) where

e'n =X(lw(n(n)n) (89)

with X(n - 1) and yf (n) as defined in equations (83) and (86) respectively. In order to solve this
P ~ -p

least squares problem via the QR decomposition technique we have to determine the rotation matrix

Qp(n-l1) that triangulanises the data matrix Xp(n- 1) and then apply it to the vector yf (n) in order to cal-
culate the angle normalised residual f (n) (cf. equation (2 1)). We also need to be able to calculate

pl
y (n - 1) in order to generate the a-posteriori prediction residual (see equation (35)). Note also that the

mrangularisation of Xp(n- 1) is exactly what we require in the solution of the pP order adaptive filtering

problem at time (n-1) - see equation (78). Consider, therefore, the following composite matrix:

M, yf(n) n-1 ~)'n-1(0

From equations (14). (19) and (28). we have that

T
QP (n -1lt = 0(n -)t aT(n l)oT,.y(n -) (91)

- p

It should be clear, therefore. that the vector nn. in the above matrix (equation (90)) will enable us

to calculate y (n - 1) just as the vector yf (n) allows cxf,(n) to be calculated. Similarly the presence of

the vector y(n- I) will allow us to calculate ax(n - 1).

Now from equations (84) and (86)we have that

M1 = yr (n) X (n - 1) yb (n -1) y(n -1) it -1 (92)
pi I - _Pi

where we have used the fact that yf (n) =yr (n)in order emphasise the appearance of the lower order
- p - p-I

problem in the decomposition of the matnx MI. Hence

.v 1(n) 0P-In1 1 -(ai- 1) PP _(n - 1) a _(n - I)

- -T

where g 1-I(n-l1) -= OT. yp (n-l (94)

It is easy to show that vf - 1(n) and vb. _ (n - 1) must have a time recursive decomposition sim-

ilarto that given in equation (21) for v P (n-). Hence

29

M = Py-) 0 O j~-o)v (n-2) (95)

Now suppose that we had already calculated a rotation matrix4. Qf (n - 1) say, that rotates the vec-
p

tar v b -(n- 2) into a form where only the top element is non-zero i.e.

IQ n -1)o'

fT REb -1)11

p M (96)
P11) 0 o 0 1 (n 2) 0

Ot - (n) OT (n-) cip 1) y (n

Ihe new quantities Vf - (n - 1). -& (n - 1), V 1(n - 2). 0~ (n - 2) and E b_(n - 2) are defined

by this operation and we note, by analogy with equation (12). that E b_ (n - 2) is the square-root of the

(p- Wt order backward prediction energy at time (n-2).

Now in order to complete the Iriangularisation of the matrix Xp(n- 1) (see equation (92)) all that is
required is the annihilation of the single element a~ b_(n - 1). This can be carried out using a single

Givens rotation:

uf -T e (n)R -1)u - 1 pa

~~() M = i' ~ (nn p-i (n ~ 1(n-l _ (nI)(7

f (n) T Eb_1n-1 1 (n-) y(n-l
-- L -1Pp- p

Opn M3 Of 1 (98)

at (n) 0 0(n n1-)1) yp-n

4. The notation for the rotation matrices introduced in this memorandum are somewhai arbitrary in order
to solve thep fh order jbrward linear prediction problem, we must annihilate quantities from the (p-if '
order backwrd prediction problem. Following the nomenclature used for reflection coefficients, the
rotanon matrices used here are labelled according to the problem to which they relate rather than the
quantities they annihilate.

30

where ap(n - 1) is defined by this operation. The identity in equation (98). and hence the labelling of

some of the elements in the bottom row of the right-hand matrix in equation (97), follows by definition

(see equation (92)). Note from the above that the "new" quantities df _ 1(n - 1) and ip _ (n - 2). in-

troduced in equation (96). are equivalent to existing variables. Indeed, from equations (97) and (98) we

have that

05 (n- 1) POP_ ,(n 2) _- f'n
y n)vp(n -1) (99)P PcJp(n) ctp(n-I 1) ~

so that. see equation (21), df (n) = vf (n) (100)

-p-I -

and 1p_ ,(n) = vp(n) (101)

From the above we see that the sequence of orthogonal transformations shown in equations (93),

(96) and (97) solve the eth order forward linear prediction problem. Note, however, that the matrix op-
.f

erated upon by Q(n) in equation (97) consists entirely of quantities that would be available if the

(p-I)st order forward and backward problems had already been solved at time n and n-I respectively. If

this assumption were true then we could have constructed this intermediate matrix directly. thereby cir-

cumventing the need for the operations as outlined in equations (93) and (96). Only the single Givens

rotation of equation (97) would actually need to be performed and so the number of arithmetic opera-

tions required would be independent of p: only eight elements, one of which is zero, of the left hand

matrix in equation (97) are affected by the required rotation, Having derived a fast method for solving

the forward linear prediction problem. we now consider a fast update method for the auxiliary (back-

ward) problem.

3.3 Backward Linear Prediction

The pth order backward linear prediction problem, at time n, requires the determination of the vec-

tor of filter coefficients wbln) = [w o(n)... wp p (n)] that minimises the total prediction error

e (n) where

ep(n) = X (n)wb(n) + yb(n) (102)P -P -

Again the least squares solution to this problem can be found by the method of QR decomposition.

It is necessary to determine the rotation matrix Qp(n) that tiangularises the data matrix Xp(n) and then

apply it to the vector yb(n) in order to calculate ab(n) (cf. equation (21)). We also need to be able to

calculate yp(n) (see equation (35)) in order to generate the a-posterioi prediction residual. Consider.

therefore the following composite matrix and the illustrated decomposition which is a simple extension

of equation (85)

31

on- I x(l) 0 T 0 0

X (103)

In equation (103). it has been assumed that the data sequence x(n) is pre-windowed (i.e. x(n) = 0

for n !5 0). Note that this is the only place in the analysis where we require this assumption5 .Consider
the effect of the rotation matrix Qp-(n-l) on the lower part of the matrix in equation (103):

_o -XO) r 0 0 -
1 0

T b

M4 = uf (n) RP_ (n-1) up_(n-l)ap_ 1(n-1) =M5 (104)
0 Qp lPn I) -

1(n - v _ -(n) 0 v b_ 1(n - 1) g 1 (n-)

As before, all the vectors on the bottom row of the matrix M 5 may be written in terms of their un-

derlying time recursion and thus we obtain the expression:

3n- Ix(l) 0OT 0 0
p l(n) Rp 1 (n-l) ~ (n)a 1 n.l(05

M5 = (n-p_ 0 lap_ (n -) op (n-1Sfil~~yi,_ _n -) 1 s) a
11 (
f _

ln) R O
T

U:
b

M5 P-- P (n- 1 p_ (n (105)

Now suppose that we have already constructed a rotation matrix Qb(n - 1) that annihilates the

vector v (n 1) by rotation against the element 3n -I x(l) i.e.

Sfp- 1(n - 0 T pb _ (n -2) 0

o 0 b ~ 1 (n-l) -1)_ 0~Q b(n - l Q M 5 - , -(n) R P -(n - 1) -b _ - 1) aP -_ (n -- M 6 6

o T 0 0 PLob _ (n - 2)

ap_ P- l(n -~n 10 r~) yp_,i
(n
-1)

Now let P (n) be the rotation matrix that annihilates the element ot P (n) by rotation against the
element beltp _ 1(n - 1). Application of the transformation 0p(n) to the above matrix yields the result:

5. It is possible to develop a QRD-based fast Kalman algorithm in which x(n) * 0 for n ! 0. The
resulting algorithm is based on much of the pre-windowed version presented here but with
some extra computation - see Cioffi [4] for further details. The authors are not aware of any
similar work for the QRD-based lattice algorithm.

32

E f T _ (-) i(n)b 0) 1)

Qp(n) M6 = P-1 t n plnl Up~ln apln M, (107)

o 0 pb_ (n - 2)

0- OT &P (n) jp- _(n)

where the new quantities ap(n), Zip _ (n) and -p 1(n) are defined by this equation. Bearing in mind

the underlying data matrix (see equation (103)), recall that we are attempting to create an upper-trian-
gular pxp matrix in the upper left-hand corner on the matrix in equation (107). At present this sub-ma-
trx is not quite triangular but a little thought shows that it is easy to construct a matrix (Qp(n) say)

which will complete the required triangularisation. Specifically, let (p(n) be constructed from a se-

quence of Givens rotations such that each rotation annihilates one element of the vector Up in) in
turn. Provided we start with the last element of up - l(n) and work upwards, the sequence of rotations

will not destroy the triangular structure of the matrix R,_ 1(n - 1) although its value will be changed

as a result. Thus

- b R (n) u (n) a (n)Qp(n) M7y= p (108)

0 v b(n) gp(n)

Note that the matrix 0p(n) only affects the upper part of the partitioned matrix on the left hand
side of equation (108). It should therefore be clear that

b (n) = a b(n) and ' o_ .(n) = y (n) (109)

15 1 -2) b

Also note that P t (n v (n) (110)cz(n) b

p -

and so the "new" quantity 1b (n - 2). introduced in equation (106), is equivalent to an existing var-
iable. Indeed, from equation (21) we have

b (n - 1) = vb(n) (l11)

Hence the sequence of orthogonal rotations given in equations (104), (106). (107) and (108) solve

the pth order backward linear prediction problem. Following the development of the solution to the for-
ward problem in section 3.2, note that the data matrix on the left-hand side of equation (107) could be

constructed directly given the solutions to the (p-I)st order forward and backward linear prediction
problems at time n and n-I respectively. Thus the transformations shown in equations (104) and (106)

33

a q-1 (n - 2) a(n -1

f

q__
-

_,(n a q(

q

T" q(n)
T) Aq 1 b_ 0-2 p (n)

Figure 11 QRD-based Least-squares Lattice Section.

could be by-passed. Furthermore. assuming that we are only interested in the prediction residuals, the
transformation shown in equation (108) is not required either, since ab(n) and yp(n) are both available
in the matrix M7. Thus only the Givens rotation summarised in equation (107) need actually be per-

formed and the number of arithmetic operations required is independent of p: only six elements, one of
which is zero, of the matrix M6 are affected by the rotation.

3.4 The ORD Least-squares Lattice Algorithm.
Gathering together the results of sections 3.2 and 3.3 we see that it is possible to utilise various

terms from the solution to the (p-l)St order forward and backward linear prediction problems, at time n
and (n- 1) respectively to generate corresponding terms for the solution to the pih order problems at time
n (see figure 11). Note that the processing elements shown in figure II are the same as those used in the
triangular systolic aray described in section 2.3 (i.e. as shown in figure 3). It is possible to show that
the corresponding square-root-free implementation may be obtained very simply by substituting the

processing elements shown in figure 4.

Given that 0th order linear prediction is trivial, we can thus generate the solution to the pth order
problem by iteration in order using a cascade of the sections shown in figure I. The resultant architec-
ture (figure 12) has a lattice structure and, since the number of operations per stage is independent of p,

34

Delayed Adaptive
Filtering Residual

Input T..

Forward

Inut Residual

Backward
T T Residual

T T T

' Rotation PE's

(see figure 3 or 4)

Multiplier Delay

Figure 12 "Delayed- Adaptive Filtering Lattice

a +n(n-) I) a, (n
(n-1 qq 1

)((nn ---)

q q i

T ob (n)
ab:TJ q+i

q(a(n a (ni)
__) _ q ; q+i1

a) Delayed Residual b) Undelayed Residual

Figure 13 Equivalent Order Updates for Joint Process Residual.

O(p) operations are required to solve the ph order problem (see appendix for algorithm listing). Note

that by including the adaptive filtering reference vector y(n-1) in the calculation of the pP order forward

linear prediction problem (section 3.2) we automatically solve the ph order adaptive filtering problem

for time (n-I). The solution to the adaptive filtering problem for time n can be easily derived from the

above. Note that in figure II the rotation parameters used (in the square processors) to calculate each

order update of the delayed joint process residual are evaluated (in the round processors) from the de-

layed backward residual. Thus by using the undelayed backward residual, we can calculate the rotations

required to update the undelayed joint process residual - see figure 13. In this form, a stage of the QRD-

based lattice can be seen to be very reminiscent of that of the standard least-squares lattice. the only

difference is that the former structure has rotation processors instead of the (reflection coefficient) mul-

35

tipliers of the conventional form (see Haykin [12] figure 17.2). Although concptually appealing, the

QRD-based lattice filter stage shown in figure 13b is inefficient because there is duplication in the cal-

culations of the rotation parameters for the forward prediction and joint estimation residuals. Any prac-

tical implementation would clearly calculate the rotation parameters only once in the joint process esti-

mation channel and store them for use in the next time instant in the forward prediction channel.

In section 2.8 we discussed the Recursive Modified Gram Schmidt (RMGS) algorithm with error

feedback. This was proposed by Ling Manolakis and Proakis [15] for the general narrowband adaptive

beamforming problem and leads to a biangular array processor equivalent to the one described in fig-

ures 2 and 4. Ling and Proakis [16] subsequently developed the technique to produce an efficient RMGS

algorithm with error feedback which requires 0(p) arithmetic operations per sample time to solve a P

order adaptive FIR filtering problem. Their algorithm also has a lattice structure and, in view of the

equivalence referred to above, it is not surprising to find that it corresponds exactly to the QRD-based

least squares lattice algorithm derived in this memorandum (assuming that the square-root-free Givens

rotations in figure 4 are employed). The RMGS lattice algorithm with error feedback was the first nu-

merically stable least squares lattice algorithm to be developed and it is interesting, therefore, to note

this correspondence to an algorithm based entirely on orthogonal rotations.

3.5 The ORD "Fast Kalman" Algorithm.

In this section we expand on the remarks made in section 3.1 about the connection between the

forward and backward linear prediction problems for a fixed order and develop the QRD-based fast Kal-

man algorithm. We take as our starting point the situation where we have solved the ph order forward

linear prediction problem for time n and are attempting to update this solution to the next time instant.

Specifically, if we could generate the matrix Qp(n) using 0(p) arithmetic operations then the linear pre-

diction solution could be updated efficiently.

The original derivation of a QRD-based fast Kalman algorithm was presented by Cioffi [4] al-

though his algorithm differs somewhat from that presented here. The material presented in this section

follows that of reference. [23] and leads to the same algorithm as derived by Regalia and Bellanger [27].

Both of these derivations were based on Cioffi's work and the approach presented here actually follows

the same sequence of ideas used in Cioffi's original paper. The difference in the resulting algorithms is

due to the choice of triangular matrix used in the QR decomposition. Here we use an upper, right-hand

triangular matrix to conform with the work of Gentleman and Kung [8]. Cioffi on the other hand chose

to use a upper, left-hand triangular matrix. This choice results in an algorithm which is slightly more

complex than the one derived here. We refer interested readers to the original references for further de-

tails. As in the case of the lattice algorithm, the solution to the adaptive filtering problem is updated

along with the linear prediction one. In fact, since we will be calculating the matrix 0.(n). there is clear-

ly no need to include the adaptive filtering problem explicitly in the following analysis.

Note from equations (104). (106), (107) and (108) that

36

Qb+ ()b) - b (n- I) _ IQp+ Pn) P+in +I)P+(-IY(112)
l~n)-v+ OT 09 Qpn-1)

which can be viewed as a time and order update relationship for the matrix QP(n - 1). Also from equa-

tions (93), (96) and (97) we have

7

Q f +(n) 9 1
Qp +(n) = ,P + An + 1) p I Qp(n) (113)

or, given that the inverse of an orthogonal matrix is just its transpose.

-,T T
Q)(n) [) o [r+ I(n + !)] Qp+ 1 (n) (114)_o0T I-1

which is an order down-date relationship for Qp+ 1(n) . Taken together. equations (112) and (114) rep-
resent, at least in principle, a means of updating the matrix Qp from one time instant to the next. How-
ever we are really interested in obtaining a time update relationship for the matrix Q(n). since the ma-
trix Qp operates on the entire data matrix and would therefore lead to an algorithm which is not time-

recursive and requires an ever increasing amount of storage. Furthermore, since explicit evaluation of
the relationships derived above would require O(rri) multiplications, this approach could not lead to a

"fast" algorithm.

The observant reader will have noticed that the matrix product Qp+ I(n)Qp+, I(n) depends on
knowledge of the pth forward linear prediction problem at time n (equations (107) and (108)) and thus
is. by assumption. is known: whereas the matrix Of+ (n + 1) depends on the solution to the pth order

backward problem at time n. Ths is somewhat paradoxical given that one of the purposes of trying to
calculate Qp(n) is to calculate this solution! However, as we shall see, it is possible to avoid this para-
dox by doing the matrix multiplications required by equations (112) and (114) implicitly. thus comput-
ing the matrix 0,(n) efficiently and generating a fast algorithm. We do this by constructing only the

right-hand column of the matrix (5p(n) and then inferring the whole matrix from this vector (as in sec-
tion 2.7). This technique reduces the dimension of the problem (from matrices to vectors) and thus
scales down the computational requirement: in fact, the evaluation of equations (112) and (114) is ac-
tually reduced to O(p) arithmetic operations in this case. Note that the right-hand column of the matrix

(Op(n) can be considered to be the result of applying the rotation matrix (0,(n) to the pinning vector n.

defined in equation (67). The occufrnce of the pinning vector in the calculations is typical of fast Kal-
man algorithms.

Returning to equation (112). we see that

37

Ap,~I (n113) -Qb0

p+p +lf p4 (n 0 1.
Jy(n-1

and, from equation (113).

Or (116)

Now from equation (106), it is clear that the vector o a Tn-) o Ty (n-I1) Tis unaffected by the
- p p

mam Qp (-)Siial.teeora(n) oT y(n) is invariant under the action of the matix

of ,(n) (see equation (96)). Hence, we deduce that

-b a a(n -

(n = Qp 1 n ~ ~ 1 n 0 (117)

P+ I -y P(n 1)

ap (n) a (n)
and o =Q+ (n +1) 0 18

yp + I(n)_ y(n)

Finally. with reference to equation (97), we note that

aP~n)
;a (n) I~ 1 n 19

LP -p (n)

Clearly, if the rotation angle correspnding to . +(n +41) is e then

;Fap +(n) - cose sine 0 (120)
-sine ~ ce (n)'

38

IF x - 0 THEN
X¢ C +- 1: s +- 0: rout +- rin" Tome Ymn

~ELSE
Yin "2 2.

r i (cs)n

C 4- (r1 n/rou) S- (xi/rout);
' Yout ot+ yn

out ENDIF

rin Xm

Xout +- CXin - Srin

(Cs) (C.S) rou t +- s" Xn + Crin

Figure 15 Fast Kalman Processors

and hence the rotation matrix Qp+ I(n + I) can be calculated indirectly from the known quantities
ap + 1(n) and yp+(n). Thus we can avoid the paradoxical situation of needing to know the solution to
the pth order backward linear prediction problem at time n before (Op(n) is known.

T
Thus by means of equation (117) and we can transform the vector aT(n - 1) oT Y(n) into

T
the vector aT- +(n) OT (n) in O(p) orthogonal operations. Equation (18) then provides the ba-th vetr.p ~).yp+ I~n

T
sis for an O(p) method for transforming this latter vector into aT(n) OT y (n) and finally pW(n) can

- ,T

be calculated, again in O(p) operations. from aT(n) oT 7 (n) as shown in section 2.7. The resulting
-P - P

algorithm may be implemented using the parallel computing architecture shown in figure 14 with rota-
tion processors as defined in figure 15. Note that these rotation processors are essentially the same as
those used in the triangular array and lattice algorithms. The main difference is that the processing de-
mems in figure 15 do not store any internal variables: all variables are either passed into or out of the
processing elemers. In fact if these processing elements are equipped with a storage element and the
correct output variable fed back to the relevant input (as shown in the left-hand column of cells in figure
14) then they are essentially identical to the processing elements shown in figure 3.

An interesting consequence of using the QRD approach is thaL unlike other fast Kalman algo-
rithms, the QRD-based fast Kalman algorithm not only produces the solution to a given order problem

but also that for all lower order problems. This is because the QRD-based approach to least squares min-
imisation is inherently an order recursive process (see section 3.6). For instance, consider the triangular

processor array described in section 2.3. It should be clear that the quantity being passed down to the

39

x(n)
1"2

1 f3
2

1f2

-b

f . 4
3

17 0

1f2

Ia

04

Y4

f
04

a& Y3

42 Y2

T

Figure 14 QRD Fast Kalman Architecture

boundary cells (the product of the various cosine terms from earlier rotaions) is the quantity -(N) re-
quired by the lower order problems. A small amount of thought will also reveal that the angle normal-
ised residual, a(n). for a given lower order problem, is the quantity passed down to a boundary proces-
sor from the last internal processor of that parcular column (see figure 16).

It is interesting to note that. at first glance. the algorithm pictured in figure 14 appears not to include

any quantities related to the backward linear prediction problem: however this is not true. It is possible

40

to show (see section 3.6) that the vector 4(n) consists of the backward prediction residuals for orders 0

to p- I normalised by the respective prediction error energy. Indeed Regalia and Bellanger [27] derived

their algorithm using these quantities explicitly.

3.6 Physical Intirpretation of Fast Alorithm Parnmtem.
The QRD-based approach to least-squareb minimisatlon is just one of many different ways in

which the problem can be solved. However. the quantities used in a QRD-based algorithm appear to be

radically different from those to be found in the more familiar approaches. Clearly because the under-

lying problem is the same, the variables in a QRD-based algorithm must be related to more conventional

quantities, In this section we point out some of these relationships along with some other interesting in-

ter-relationships between quantities found in the QRD-based approach. Indeed, the QRD-based ap-

proach to least-squares mimmisation and linear prediction in particular, offers many useful insights.

We have already seen that the forward and backward prediction residual powers appear quite nat-

urally in the QRD-based lattice algorithm - albeit in terms of their square-roots: ef and eb (see equa-

tions (97) and (107)). The Jance algorithm also calculates estimates of the partial correlation coeffi-

cients (12]. Consider the term f in equation (97): if the rotation angle corresponding to (fp(n) is

E) and we let c cose and s - sinE) then

C S I1(121)

-S c a f(n) a b_ (n -1) af (n) 0

i.e. f± 1(n) = Ocpi,_(n- 1)+sc f
1 (n) (122)

where p 1
=aad (n- I- (123)whr -- - an S= (123)

E b_ (n - 1) E b_ (n- 1)

Combining equations (122) and (123) we find. after some algebra, that

bp_ (n) _ p2 bp _ i(n - 1)+ (n-l) f (n) (124)

n (n m) b P _ (n)Gfp _ ()(1)

n
2(-)a, (m - l)af (i) (125)

where bpi(n) eb _ (n - l)L± . (n) (126)

41

Now, by comparison with equation (47). we have

S (n, n-)ef 1 (n. n) (127)Ofp l(n) P P:%

and

apb (n-1) eb_(n- n-2)eb(n-I. n-l) (128)

Thus the angle normalised linear prediction residuals are identical to the so called rationalised residu-

als[191. In particular we see that this interpretation of the angle normalised residuals implies that the

right hand side of equation (125) can be viewed as a (weighted) estimate of the crosscorrelation between

the normalised forward and backward residuals. Indeed for stationary signal statistics, once a recursive
least squares prediction algorithm has converged, the a priori and a postenori residuals, and hence the
angle normalised residuals, are identical. Finally, as the backward residual power [cb is effective-

ly an estimate of the mean square backward residual, we see from equation (126) that

b f[ep (n - 1,n -Oep_ (nn))
f (n) -n- (129)P (epb_ 1(n - 1, n - 1)) 2

In a similar manner, it is possible to show, again from equation (97). that

[ep_ (n - 1, n - I)ep_ i(n - 1, n - 1)]

9p- 1(n -1) (130)
(ep_ (n - 1, n-I)

2

and. from equation (107). that

i n
[e p - l(n I n)e_ (n-)]

P(ei-(n. n)) 2

Thus we see that f_ (n), gb (n - I) and V_ (n - I) are estimates of the various PARCOR coef-

ficients.

Next we consider the order-recursive nature of the QRD approach to linear prediction. Note that

equations (97) and (98) provide a recursive decomposition of the matrix R n - 1). Specifically, and

for time n rather (n-I),

42

x(n) yb(n) f x(n-4) x(n)

T TT T T TT b~nY4(n)

1.0 1.0

y -(n)

a) 4th order Backward Linear Prediction b) 5th order Triangular Array

Figure 16 Order Recursion within the QRD-based LS Algorithm

Rp(n) = !Rp_ 1 (n) up (n) (132)
o ,,b_ (n)

This shows that the diagonal elements of the matrix R p(n) are in fact the square-roots of the back-
ward prediction residual energy terms for each of the sub-order problems. It also indicates why it is sen-
sible for the Givens rotations used in QRD-based linear prediction to ensure that the diagonal elements
of the R(n) matrix are always positive. Equation (132) also shows that the off-diagonal parts of the tri-

angular matrix are the various "u" vectors. This is not surprising considering that the linear prediction
problem could be solved using a full pxp systolic array with the time seies x(n) fed in via a tapped delay
line as indicated in figure 16. It therefore serves to emphasise the fact that a QRD-based approach gen-
erates the solution to all sub-orde.r problems as well as the target problem of a given order.

Order recursion also plays an important part in any least-squares lattice algorithm. Traditionally
the order recursion for the prediction residuals takes the form [12]

ef(n)n)- ep](n,n)+kp n)ep_ (nn)-I, n- l)
eV nkn J (133)

= (, n -P 1. n - 1) + kb n)ep P,~n n)

where kf(n) and kb(n) are the e order reflection coefficients. Unlike the conventional lattice algo-
rithms, the QRD-based one derived in sction 3.4. does not explicitly calculate reflection coefficients:

instead the order update for the (angle normalised) residuals takes the form (see equations (97) and

(107))

43

a!(n) - c p(n) af (n)- s(n)OJ (n-1)

a b(n) =b c(n)ab 1(n - 1) _ Sb(n)~t -i 1(n - 2)

where lip cn)Ot t
- P(-1) +- 5n)a - :(n) (135)

A b_(n- 1)- c (n)O b _(n -2) + s bn)a b (n 1)

and cn), s (n), c (n) and sP(n) are the sines and cosines of the transformations (O,(n) and Op(n) re-

spectively. Equation (134) appears quite different to the usual lattice equations shown in equation (133):

however, note that equation (134) is written in terms of angle normalised residuals and not a-posteriori

ones, and that the sines and cosines are functions of the residuals (see equations (97) and (107)). Con-

verting from the angle normalised residuals to the a-posteriori ones using equation (45) and evaluating

the sines and cosines we obtain, after some manipulation,

f f gf_ l(n)b
e (n, n) e e ,(n, n) - --- e (n-In- 1)

P-I (136)

ep(n. n)= e (f p_ - (n, n)
S 1(n)p-1

from which it follows that

k,(n) = _P-1(n
- _ (n - 1)

(137)

k b _ = b I(n - I)p(n)=- -'----
p- Ef (n)

This result is not surprising: the reflection coefficients in equation (133) are defined to be those

n n

values that minimise the terms fe(m, mn) and e b (m, in). In other words, the reflection coef-

ficients are the coefficients in a first order least squares minimisation problem. From section 2.1 we
know that. when using the QRD technique. the least-squares coefficients are given by

w - -R-u (138)

In the case of a first order problem, both the matrix R and the vector u are scalars and for the least-

squares minimisation problem shown in equation (133) these quantities equate to those shown in equa-

tion (137). This equality can most easily be seen with reference to figure 11. If the least-squares mini-

44

misation problem is one of first order, then the triangular QRD array (cf. figure 2) will be a single cir-

cular processing element and the right-hand column will reduce to a one square processing element.

These structures can easily be identified in figure I I from which the relationships shown in equation

(133) can readily be deduced.

As remarked earlier, the QRD-based fast Kalman algorithm is also unusual in that it does not cal-

culate conventional quantities (the optimum coefficients). As described in section 3.5. the QRD-based

fast Kalman algorithm calculates the rotation matrix (Op(n). This matrix is then used as shown in equa-

tion (21) to compute the vector u p(n) and produce the adaptive filtering residual. However. we note that

the vector up(n) is merely a transformed version of the optimum coefficients w P(n), as discussed above.

Another unusual feature of the algorithm derived in section 3.5 is that it does not appear to make

use of any quantities related to the backward prediction problem. This is not true however since the vec-

tor a,(n) may be interpreted in terms of the backward prediction residuals. To see the equivalence, con-

sider equations (19).(120) and (123): it is clear that

4P ap (n) ap _ (n)

1 ypln = 1(pn)_ = 1(n) (139)

and we see that the vector g,(n) consists of the energy normalised backward prediction residuals of order

(p- I) and below.

3.7 Weight Extraction from Fast Algorithms

The QRD-based least squares lattice and fast Kalman algorithms presented above are based on the
"'direct residual extraction" technique and as such produce the adaptive filtering residual without explic-

itly calculating the optimum weight vector. This is highly desirable in an adaptive filtering context since

the residual is the quantity of interest: however in system identification the primary goal is the calcula-

tion of the weight vector. The two weight extraction techniques presented for the full QRD-based algo-

rithm - weight flushing (section 2.6) and parallel weight extraction (section 2.7) -are equally applicable

to the fast algorithms. Note. however, that neither of the fast algorithms explicitly calculates the tran-

gular matrix R so that the back-substitution method (equation (11)) is not available.

Both the lattice and fast Kalman algorithms use the same processing elements as the full triangular

QRD array and can therefore be operated in the frozen mode. If a unit impulse is fed into the frozen

filter, its output will clearly be the impulse response of the system i.e. the set of filter weights. Note how-

ever that unlike the narrow-band beamformer of section 2, the adaptive filters presented here are not

memoryless systems when operated in their frozen mode: the (implicit) tapped delay line must continue

to operate. It is therefore necessary to ensure that the tapped delay line is full of zeros before applying

the unit impulse. Thus it would require an input time series of length 2p+l consisting of a single sample

45

I .

of value unity sandwiched between two sets of p consecutive zero samples.

Although this operation will produce the filters impulse response, it is an invasive procedure -

again because of the fact that the system has memory. Having frozen the filter and passed the impulse

sequence through it. the state of the filter (the contents of the tapped delay-line) will have been altered

compared to the point in time when the filter was frozen. Thus it is not now possible to unfreeze the

filter and continue with the adaption process as if nothing had happened. If the system is allowed to

adapt from this incorrect filter state then the output will be in error - until sufficient data has been proc-

essed so that the error in the filter's state has decayed away. This may well be acceptable in certain sit-

uations since this process of converging to the required solution is exactly what happens when the filter

is first started. One way in which weight flushing can be made non-invasive is for the contents of the

filter delay elements to be stored before the weight flushing begins and the restored before the adaption

continues.

Recall from section 2.7. that in order to extract the filter weights in parallel with the adaption proc-

ess. it is necessary to have available the rotation matrix ((n). This matrix is explicitly calculated in the

fast Kalman algorithm and indeed is also available in the lattice algorithm in a disguised form: it can be
-f

shown that the rotation matrices Qi(n) (I i ! p) are equal to the elementary Givens rotations

G1(n) (1 < i < p) that make up the matrix 0(n) - see equation (30). Thus it is possible to use the ad-

ditional hardware shown in figure 8 in conjunction with the fast algorithm (instead of the triangular
processor array) to generate the weights. However, the utility of this approach is questionable since the

addition of the extra processing means that the computational load of the complete algorithm tises from

0(p) to 0(p,) and the advantage of the fast algorithm is lost.

3.8 Computer Simulation.

I x~n A |(y(n)

Training Channel -Fda p t ie

Measuremen

Noise

Figure 17 Channel Equabser Experiment.

The main concern with "fast" algorithms is that they are potentially more sensitive to numerical

46

errors than their generic couterparts. This is because the fast algorithms exploit some mathematical re-

lationship between various quantities in the generic algorithm in order to reduce the computational load.

In the case of the least-squares lattice algorithms, the assumption that the problem has already been
solved for the one order allows the solution to the next order problem to be generated efficiently. Now

in practice, the calculations can only be done to a finite accuracy so, strictly speaking, the assumptions

upon which the fast algorithms are based (e.g. the existence of the solution to the lower order problems)

are only approximately true. We can therefore expect to pay some penalty. in terms of numerical stabil-
ity. for the reduced computational load. The perceived advantage with the fast QRD-based algorithms

is, of course, that they should be more robust in the presence of numerical errors than other fast algo-

rithms.

In order to investigate the effects of finite precision on the fast QRD-based algorithms we consider
the application of an adaptive filter to a typical channel equalisation problem (figure 17). In particular,

we consider6 the case of an adaptive equaliser applied to a data channel with a "raised cosine" impulse

response (equation (140)).

h(n) + 2 +cos((n- 2)) n= 1.23 (140)

0 otherwise

By varying the parameter W. the amount of interference between a given symbol and the two either side

of it can be changed. This, in effect, controls the eigenvalue spread of the data covariance matrix (see

table 2).

An I Ith order adaptive QRD-based least-squares adaptive filter is used to equalise the channel re-

sponse. In the simplest of situations, the equalise, would be trained periodically by transmitting a known

sequence and adapting the equaliser with a stored version of this signal as the "reference" signal (see

section 3.1). In between these training sessions, with the adaption frozen, the channel can be used for

the transmission of data, hopefully with the inter-symbol imerference much reduced.

In our computer experiment, the transmission channel is fed with a polar (± 1) pseudorandom train-
ing sequence. This sequence, delayed by seven time instants, is used as the reference signal for the adap-

tive filtering algorithm. The delay is inserted to ensure that the adaptive filter has an impulse response
that is symmetrical about the centre tap. A small quantity of "measurement" noise, in the form of a pseu-

dorandom sequence with an approximately gaussian probability distribution function, is added to the

channel output. The noise sequence used has zero mean and a variance of 0.001. The "forget factor" 0

(see equation (4)) was fixed at a value of 0.996, which implies an effective data window (i.e. the dura-

tion for which any data vector has an effect on the filter adaption) of 250 time samples.

6. Suggested by S Haykin.

47

.

Wt

2.9 6.1
3.1 11.2
3.3 21.9
3.5 47.5

Table 2 Eigenvalue Spread

All calculations within the algorithm were performed using limited-precision floating point arith-

metic. Only the number of bits in the mantissa is varied during the experiments: the number of bits in

the exponent is fixed at eight. No quantities internal to the adaptive filtering algorithm are held to a

greater precision than t., - uts: the results of all arithmetic operations are immediately reduced to the

required precision. The numerical performance of most algorithms can be improved by using higher

precision for some internal calculations: however it is necessary to have a good understanding of the

algorithm and, in particular, to identify the critical intermediate quantities for this method to be used

effectively.

The performance of the equaliser is monitored by recording the ensemble-averaged, squared a-pri-

ori equalisation error (see equation (40)). This has the advantage that it shows how close to convergence

the algorithm is whilst still showing, asymptotically, the least squares equalisation error. The ensemble

average is taken over 100 realisations of the experiment. Several experiments were performed using

various combinations of parameters and algorithms however only the main results are discussed below.

Care should be taken in the interpretation of any computer simulation experiment. In particular, when

the numerical stability of an algorithm is being investigated it should be noted [3] that instability is often

preceded by a period of apparent stability (e.g. figure 19, 8 bit mantissa plot). Thus simulation experi-

ments can only confirm lower bounds on the sequence length required to cause instability and not

"prove" that a system is stable.

Figures 18 and 19 show the basic performance of the fast QRD-based equaliser algorithms, using

the square-root. feedforward Givens rotations (SQ/FF). for different values of wordlength and eigenval-

ue spread. Figure 18 shows that, with double-precision arithmetic, the rate of convergence is more or
less insensitive to the different eigenvalue spread settings: as would be expected from a recursive least

squares minimisation process. Figure 19 illustrates how the wordlength affects the performance for a

fixed eigenvalue spread (W-2.9). There is very little discernable difference between the filters using 12,

16 and 56 (IEEE double-precision) bit mantissas and these filters appear to be well behaved for data

sequences of length up to 200. The first sign of any instability appears with a mantissa of 8 bits. Here

the filters initially show signs of converging to a stable state but then begin to diverge producing an ever

increasing error. The 4 bit systems clearly do not behave in a sensible manner as would be expected

from such a short wordlength. Note that there is very little difference between the two fast algorithms

(the lattice and the fast Kalman).

Figure 20 shows a comparison of the QRD-based lattice algorithm with the full QRD-based trian-

48

U ~ A,

Figure 18(b) QRD fast Kalman: Effect of Eigenvalue Spread.

49

Figure I-' a) SQ/FF QRD Lattice: Effect of Wordlength.

Figure 19(b) QRD fant Kalman: Effect of WordlengttL

gular systolic array version. Four systems are also shown in this figure: they are the "'square-root-free

with feedback" (SF/FB) forms of the lattice algorithm and the array algorithm along with the SQ/FF

versions. Ths figure shows the case of 4 bit mantissas and a fixed eigenvalue spread setting (W=2.9).

This may be considered to be an excessively short wordlength. The reason for this choice is that often

fimte precision effect are often only manifested after the round-off errors have had time to accumulate

[3]. By using a small wordlength, the appearance of such effects occur sooner thus reducing the time

necessary to perform the simulation.

In most cases, a pth order RLS adaptive filter will converge within 2 p time instants. At this point

the a-priori residual will have reached a value primarily determined by the eigenvalue spread and not

the wordlength. As round-off errors accumulate, the a-priori error will increase indicating a loss of ac-

curacy in the algorithm. Up to a run length of 10000. the longest simulation run to date by the authors,

the SQ/FF lattice algorithm remains stable with 12 bit mantissas. In the case of the SF/FB lattice, the

same behaviour is seen using only 4 bit mantissas.

It can be seen. in figure 20. that in the SQ/FF mode the faster, lattice algorithm is only marginally

worse than the full triangular array version thus demonstrating that little penalty has been paid in reduc-

ing the computational load. As expected, the square-root-free with feedback versions of the algorithms

perform better than the basic versions. In this case. there was no discernable difference between the lat-

tice version and the array version in any of the simulations run so far. This would seem to demonstrate

the power of the feedback technique in improving the numerical accuracy of these algorithms.

The relative effect of the square-root-free and the feedback techniquts can be s.ten in figure 21.

This shows the performance of the lattice algorithms with 4 bit mantissas and fixed eigenvalue spread

setting (W-2.9) for the six possible Givens rotation algorithms: SQ/FF. SF/FB. square-root Givens ro-

tations with feedback (SQ/FB). square-root-free feedforward rotations (SF/FF), square-root rotations

with the stored parameter fedback (SQ/MFB), and square-root-free rotations with the stored parameter

fedback (SF/MFB) - see section 2.4 for more details. From this it can be seen that there is indeed a nu-

merical advantage to avoiding the square-root operation but that the most significant improvement

comes about by introducing the "error feedback" - provided that the feedback is applied properly. Figure

21 shows that there is little difference in performance between the "FF' and "MB'" versions whereas

the "FB" versions (i.e. the "error feedback" algorithms) are sigmficantly bettt:

In conclusion, we have found that for both the triangular QRD processor in figure 2 and the least

squares lattice filter in figure 12, the best numerical performance over a wide range of computer simu-

lations was obtained using the SF/FB Givens rotations defined in figure 4. The fact that a square-root-

free algorithm performs best is not entirely surprising. A closer analysis of the conventional Givens ro-

tation algorithm defined in figure 3 shows that the square root operation is only required in situations

where we sum the squares of two numbers and then compute their square root. Avoiding this process

could certainly improve the numerical performance. The fact that the feedback form of square-root-free

Givens rotation in figure 4 performs best is contrary to the initial expectation of numerical analysts [I 1].

However, it is entirely consistent with the fact that the corresponding error feedback RMGS lattice al-

• -" 1

This page replaces the original page 52
of RSRE HEM 4562

I Ib

Figure 20 Comparison of Lattice and Array.

Figure 21 Comparison of Givens Algorithms.

52.

xi(n) x2(n) xP(n) y(n)

*T

++

Figure 21 Multi-channel Adaptive Filter

gonthm has also been found to exhibit robust numerical stability. Since Ling. Manolakis and Proakis
were first inspired to introduce the error feedback mechanism by analogy with the stability techniques
used in control, it would appear that this provides a better way of analysing the numerical stability of
other signal processing algorithms.

We have repeated the above experiments with values of the W parameter other than 2.9 and all of
the above observations appear to hold essentially independently of the eigenvalue spread.

4 Wide-band Beamforming.
4.1 Muli-channel Adaptive Filters

In a multi-channel least squares adaptive filtering problem at time n, a set of N p-dimensional
weight vectors. w (1)(n) (0< i! N-l). is to be found that mimmises the sum of the squared differences

P
between a reference signal y(n) and a linear combination of N samples from each of p data time series
xi(tn. j) (I ! i ! p. 0 • j • N-1). This is equivalent to adaptively filtering p separate time series in order
to form the best estimate of the reference signal (see figure 21). If the p data sequences come from spa-
tially separate antennae then we have a spatial as well as a temporal filtering problem. In this sense, the
multi-channel adaptive filtering problem subsumes both the narrow-band beamforming problem and the
(single channel) adaptive filtering problem.

To be specific . the measure En(W'N) = N(n) 2 is to be minimised. where:

ON(n) - X.(n)w'N + y(n) (141)

AT(,) ... xT(2-N)

XN(n) =B(n) (142)

xT(n) ... XT(n- N + 1)

xT(n) = x1 ln) x2 (n) ... xP(n) (143)

wp)(n)
wN(n) = _w (I) (n)4

-'n p ()(144)

w(N-I)
P (n)

and y(n) - B(n) [y(l). y(n)] T (145)

Equation (143) serves to define the new vector quantity x(n). Note that, apart from the change from

scalar to vector quantities, equation (143) is identical to equation (79). Indeed it would be possible to

consider the case where the reference signal y(n) is replaced by several such signals. In this case we

would have to replace the vector y(n) by a matrix. We will not pursue the idea of multichannel joint

process estimation any further here but note that a similar situation arises naturally in section 4.2 when

we consider multi-channel linear prediction.

The solution of this vector least squares minimisation problem via QR decomposition follows the

usual pattern and requires the determination of an orthogonal matrix QN(n) that transforms the matrix
Xgdn) into upper trangular form. The fact that the matrix XNn) is block-Toeplitz allows us to use the

ideas developed in section 3 to construct "fast" algorithms. As one might expect, it is possible to derive

both a fast Kalman and a lattice algorithm.

4.2 Muti-cnnel Ldtke
The extension of the latice algorithm presented in section 3.4 to the wide-band beamforming prob-

lem is relatively straight forward: the only change required is that certain scalar quantities be replaced

by vectors and some vectors be replaced by manices[24]. The essental features of the derivation pre-

sented in section 3.4 carry over exactly. The only point where the derivanon of the multi-channel case

deviates in any appreciable way from that given in secuon 3.4 is in the extension to p dimensions of

operations on one dimensional objects.

7. To be rigorous, we should label quantities involved with a p-channel N-tap multi-channel least squares
mnmmisation problem with two indices (viz p and N). However in the following we will be consider-
ing only iterations in the number of taps and not the nunber ofchannels Thus for notational simplicity
we will indicate explicitly only the number of taps being considered - the number of channels being
aned to be fixed

54

Beamformer
Residual

Input

Forward
,Resdu

Vector
1.0 T

Backward
Residual

"Twist" in Trangular Array with Vector

datalines Auxiliary ChannelsDelay - _ (see section 2.3)

Figure 22 Lattice of Triangular Arrays.

In the solution of the p'" order single-channel forward linear prediction problem it was necessary

to determine the rotation matrix Qf(n - 1) that annihilated all but one component of the vector

(see equation (96)). in the Nth order multi-channel forward linear prediction problem we have to deter-

mine a similar rotation matrix. However in this case, the vector xj 1 (n-2) is replaced by a suitably de-

fined matrix VNI(n-2) (with p columns - one for each channel). The equivalent operation to that of
Qf(n - I) is to convert VN.l(n-2) into an upper-biangular matrix i.e. to perform a QRD decomposition'

Indeed the operation in the single-channel algorithm can be considered to be a QRD decomposition on

a vector and the resulting single non-zero component to be a IxI triangular matrix. Similarly. the next

step in the derivation (cf. equation (97)) consists of calculating the p rotations necessary to perform the

recursive QRD update on the above triangular matrix, instead of just one rotation.

The resultant architecture (see figure 22) has a lattice structure where each stage of the lattice con-

tains two triangular systolic arrays. The total number of operations necessary to solve an Wh order mul-

ti-channel adaptive filtering problem. with p channels. is thus O(Np2). Note that in figure 22 some of

the vector data lines have been "twisted-. This merely signifies the fact that data is fed into the triangular

arrays in the order specified by the mathematics .

The architecture shown in figure 22 is intuitively satisfying for the following reasons. It is well

known (281 tit the lattice structure of linear prediction algorithms is inherent to the problem. Indeed it

is easy to show in more general terms that a pih order linear prediction problem can be solved usin a

lattice structue which, in effect, solves two least-squares minmisaion problems at each stage. These

least-squares mimmisation problems relate to the determination of the forward and backward reflection

coefficients and calculate the order-updated residuals. Specifically. for a multi-channel problem,

8. It is easy to show that this data twist in not necessary unce a permutation of the data does not aft
the vlue of the residuals, however we do not purstue this idea my futher in this memorandum

5,

f(n, n)-_e ,(n. n)-K(n)e(n-l.n-l)
b b b (146)

bp(n. n) - eb (n ln-l)-Kbn)ef (n.n)

where tf(n.n) and ep(n, n) are the pth order forward and backward a-posteriori residual vectors
and Kp(n) and K(n) are pxp reflection coefficient matrices, respectively. As we have shown, each of
the triangular arrays depicted in figure 22 is capable of performing a recursive least squares mimmisa-

tion and calculating the residual directly. A close look at figure 22 will show that these triangular arrays
operate on the forward and backward residual vectors in precisely the manner required to solve these

problems (cf. discussion following equation (137)).

An alternative method [33] for deriving the multi-channel QRD-based lattice algorithm actually

begins with the standard multi-channel lattice algorithm and transforms it into a purely orthogonal
square-root information algorithm. In the "standard" RLS lattice algorithm, the forward prediction re-
siduals for order p (say) are found by subtracting linear combinations (reflection coefficients) of the

(p- I)St order backward prediction residuals from the (p-)Sr order forward residuals. A similar relation-
ship holds for the pth order backward residuals. The calculation of the reflection coefficients requires

an inversion of the data covariance matrix which is computationally expensive and often ill-condi-
tioned. Using a Cholesky decomposition of the data covariance matrix, Lewis[13] showed how this part

of the algorithm could be transformed into a recursive, square-root information process. In this algo-
rithm the reflection coefficients are no longer calculated explicitly: quantities analogous to the vector u
in equation (1) and the vector a in equation (91) are calculated instead. Nevertheless the e h order re-

siduals are still calculated in terms of the difference between the (p-l)l order residuals and another term
(now a function of the quantities analogous to ji and a). As the bulk of the calculation is exactly the
computation of the reflection coefficients. Lewis proceeded no further with this re-formulation and ap-

parently failed to notice that the "non-orthogonal" part of his algorithm is in fact redundant. Yang and
Bohme [33] observed that the adaptive filtering residuals were effectively being produced along with

the computation of the vectors u and ; - as shown in section 2.5: this observation results in the con-
struction of a purely orthogonal algorithm and is equivalent to that derived from first principles here.

4.3 Multi-channel Fast Kalman Algorithm

The derivation of the multi-channel fast Kalman algorithm is somewhat more difficult than the lat-
tice equivaleit. If the various substitutions of scalars for vectors and vectors for matrices are carried out
then it is relatively easy to generate a "fast" algorithm. However an operation count will reveal that

O(Np) operations are required to solve a p channel N order problem. Assuming that N>p. this is "fast"
comparied to the O(N2p/) operations required when using a generic triangular systolic array fed by
tipped delay-lines but falls short of the O(Np) operations required by the lattice algorithm It is possi-

ble[21 to generate an O(Np2) multi-channel fast Kalman algorithm wan as in the single-channel case,
the pinning vector is used to allow the inference of a rotation matrix from vector quantities. As before
this technique reduces the problem by one dimension and produces an O(Np2) algorithm.

The "bottle-neck" in the naive generalisation of the single-chmel algorithm (with O(Ng) opera-

56

tions) is the calculation equivalent to that shown in equation (108). For convenience we reproduce this

equation, in part. below:

r e7n)
O

P+ 1(Rnn) (147)

0 0 J
L 0

OT

In the multi-channel equivalent, the vector up(n) is replaced by an Npxp matrix UN(n) (say) and the

scalar r(n) by apxp triangular mamx (E (n)). The operation of annihilating this Npxp matrix - equiv-

alent to a block recursive QRD update - requires O(Np3) Givens rotations: it requires O(p) operations

to annihilate a p-dimensional vector by rotation against a pxp triangular matrix and the mamx UN(n)

has Np rows.

An alternative procedure for annihilating the matrix UN(n) is to eliminate it one column at a time

rather than one row at a time as in the recursive QRD update (see section 2.2). Each column of UN(n)

has Np components and therefore will require O(Np) operations to annihilate it. If this was all that was

required we would have a fast algorithm: Uf(n) has p columns making a total of O(Np2) operations.

However, it is not sufficient for each column of the matrix UN(n) just to be annihilated individually:

the rotations that annihilate a given column must also be applied to the other columns. Columns that

have previously been annihilated clearly will not be affected by this operations but the non-zero ones

will be. Thus the rotations that annihilate the first column must be applied to the (p-I) other columns;

the rotations that annihilate the second column will have to be applied to (p-2) other columns, and so

on. This sequence of steps clearly requires O(Np") operations.

In the above scheme, the column vectors of UN(n) arc subject to. in general. several rotations. This

is exactly the situation we faced in the constuction of the single-channel fast Kalman algorithm (see

equations (112) and (113)). The solution to this problem was to use the pinning vector to effectively

condense the rotations down to a single one. Using this idea in the multi-channel case leads to an O(Np2)

algorithm. The sequence of operations is then as follows: The left-hand column of the matrix Ur(n) is

annihilated (O(Np) operations) and this rotation is applied to the second column and a pinning vector

(O(Np) operations). The transformed second column is then annihilated (O(Np) operations) and the ro-

tations applied to the transformed pinning vector (O(Np) operations). The doubly transformed pinning

vector can then be "unrotaed" (O(Np) operations) to generate a rotation that is equivalent to the com-

bined effect of the earlier pair of rotaons. This combined rotation is then applied to the third column

and another pinning vector and the process continues. At each stage only O(Np) operations are required

and thus all p columns of Uf n) can be annihilated in O(Np2) operations.

A more detailed study of the multi-channel fast Kalman algorithm shows that it is. in effect. just

the application of the single channel algorithm many times. It should be clear from the above, that the

57m

5%() Single Q1 Single Q- I Single (pn+I

'* IChannel 10 Channel ...I* Channel II*

Singl i Apply ' to stored vector and to pinning

CSnl I* vector.

A Channel ii Annihilate rotated stored vector and rotate
pinning vector again.

iii Calculate ()I+I from rotated pinning
vector.

Figure 23 Multi-channel fast Kalman Algorithm

annihilation of one of the columns of the matrix U (n) involves the three steps: the application of a
known rotation, annihilation of a vector and subsequent calculation of the combined rotation based on
the rotated pinning vector. In the single channel algorithm, exactly the same type of operations are re-
quired: the known rotation is Qp(n) and the resultant rotation is Qp(n + 1). The multi-channel algorithm
thus has the smcture shown in figure 23. Each pass of the "single-channel" algorithm requires O(Np)
operations (since the matrix U(n) has columns of dimension Np) and p such passes are required (be-

cause the matrix Uf(n) has p columns) so the final operation count is O(Np2).

58

5 References
(I] S T Alexander and A L Ghirnikar, "A Method for Recursive Least Squares Filtering based upon

an Inverse QR Decomposition", submitted to IEEE trans. SP. 1991. (See A L Ghirnikar and S T
Alexander, "Stable Recursive Least Squares Filtering using an Inverse QR Decomposition".
Proc. IEEE Int. Conf. on ASSP, pp 1623-1626, Albuquerque. NM. USA, April 1990.)

[2] M G Bellanger and P A Regalia. The FLS-QR Algorithm for Adaptive Filtering: "The Case of
Multichannel Signals". Signal Processing. vol. 22, no. 2, February 1991.

[31 J M Cioffi. "Finite Precision Effects in Adaptive Filtering". IEEE trans. CAS, vol.34, no.7,
pp.821-833, July 1987.

[41 J M Cioffi, "The Fast Adaptive Rotors RLS Algorithm", IEEE trans. ASSP, vol.38, no.4, pp.631 -
53. April 1990.

[5] M J Chen and K Yao, "On Realizations of Least Squares Estimation and Kalman Filtering",
Proc. Ist Int. Workshop on Systolic Arrays, Oxford, pp. 1 6 1-1 7 0 , 1986.

[6] F M F Gaston. G W Irwin and J G McWhirter, "Systolic Square-root Covariance Kalman
Filtering", J. VLSI Signal Processing. vol.2. pp.37-49, 1990.

[71 W M Gentleman, "Least-squares Computations by Givens Transformations without Square-
Roots", J. Inst. Maths. Applic. vol. 12, pp. 329-336, 1973.

[8] W M Gentleman and H T Kung, "Matrix Triangularisation by Systolic Array", Proc. SPIE Real
Time Signal Processing IV, vol. 298, 1981.

[9] W Givens, "Computation of Plane Unitary Rotations Transforming a General Matrix to
Triangular Form". J. Soc. Ind. App. Math.. 1958, 6, pp 26-50.

[10] G H Golub, "Numerical Methods for solving Linear Least-Squares Problems", Num. Math.,
1965. 7. pp 206-216.

[IH] S Hammarling, "A Note on Modifications to the Givens Plane Rotation",J. Inst. Maths. Applics.,
vol. 13. pp. 215-218. 1974.

[121 S Haykin, Adaptive Filter Theory., 2nd Edition, Prentice-Hall, Englewood Cliffs. New Jersey.
USA. 1991.

[131 P S Lewis. "QR-Based Algorithms for Multichannel Adaptive Least Squares Lattice Filters".
IEEE trans. ASSP, vol.38, no.3. pp.4 2 1-3 2 . March 1990.

(141 F Ling. D Manolakis and J G Proakis, "A Flexible. Numerically Robust Array Processing
Algorithm and its Relationship to the Givens Transformation", Proc. IEEE it. Conf. on ASSP.
April 1986. Tokyo, Japan.

[15] F Ling, D Manolakis and J G Proakis, "A Recursive Modified Gram-Schmidt Algorithm for
Least-Squares Estimation", IEEE Trans. ASSP, vol.34, no.4, pp. 829-836, Aug. 1986.

[16] F Ling and J G Proakis, "A Generalised Multichannel Least Squares Lattice Algorithm Based
on Sequential Processing Stages". IEEE trans. ASSP, vol. 32. no. 2, pp. 381-389. Apr. 1987.

[171 F Ling, "Givens Rotation Based Least-squares Lattice and Related Algorithms", IEEE Trans.
SP, vol.39. no.7, pp.1541-1552. July 1991.

[18] J G McWhirter, "Recursive Lea Squares Minimisation using a Systolic Array". Proc. SPIE
Rral 7 ie Signal Processing IV, vol. 431, pp. 105-112, 1983.

[19] J G McWhirter and T I Shepherd, "Least-squares Latice Algorithm for Adaptive Channel
Equalisation". lEE Proceedings. vol. 136, PL F. no. 6, pp. 532-542. October 1983.

[20] J G McWhirter and T J Shepherd, "Systolic Array Processor for MVDR Beamforming", lEE
Proceedings, vol. 130. PL F. no. 2. pp. 75-80, April 1989.

[21] M Moonen and J Vandewalle, "Recursive Least Squares with Stabilized Inverse Factorization",
IEEE trans. SP, vol.21, no.], pp.-15, January 1990.

[221 C T Pan and R J Plemmons. "Least Squares Modifications with Inverse Factorization: Parallel
Implemenatiorns" J. Comput. and Applied Maths., vol.27, no.1-2, pp 109-127, 1989.

[23] i K Proudler, J G McWhirte and T J Shepherd, "Fast QRD-based Algonthms for Least Squares

59

Linear Prediction". Proc. IMA Conference on Mathematics in Signal Processing. Warwick.
England, 13-15th December 1988.

[24] 1 K Proudler. J G McWhirter and T J Shepherd. "Computationafly Efficient QRD-based Wide-
band Beamforming". Proc. IEEE Int. Conf. on ASSP, paper no. 348 A13.12. Albuquerque. NM,
USA. April 1990.

[25] 1 K Proudler. J G McWhirter and T J Shepherd, "The QRD-based Least Squares Lattice
Algorithm: Some Computer Simulations Using Finite Wordlengths", Proc. IEEE Int. Symp. on
Circuits and Systems, New Orleans, Lo, USA. 1-3rd May 1990, pp.2 58 -2 6 1 .

[26] 1 K Proudler, J G McWLrter and T J Shepherd, "Computationally Efficient. QR Decomposition
Approach to Least Squares Adaptive Filtering". lEE Proceedings. vol. 138, Pt. F, no.4, August
1991, pp.341-353.

[27] P A Regalia and M G Bellanger, "On the Duality Between Fast QR Methods and Lattice
Methods in Least Squares Adaptive Filtering". IEEE Trans. SP, vol.39, no.4, April 1991.

[28] M J Shensa. "Recursive Least Squares Lattice Algorithms - A Geometric Approach", IEEE
trans. AC. vol. 26, no. 3. pp. 696-702, June 1981.

[29] TJ Shepherd and J Hudson, "Parallel Weight Extraction from a Systolic Adaptive Beamrformer",
Proc. IMA Conference on Mathematics in Signal Processing, Warwick, England, 13-15th
December 1988.

[30] B.D. Van Veen and K.M. Buckley, "Beamforming: A Versatile Approach to Spatial Filtering".
IEEE ASSP Magazine. pp.4-24. April 1988.

[31] A P Varvitsiotis and S Theodoridis, A Pipelined Structure for QR Adaptive LS System
Identification, IEEE Trans. SP. vol.39, no.8. pp. 19 2 0 - 19 2 3 , August 1991.

[32] C R Ward, P J Hargrave, J G McWhirter, A Novel Algorithm and Architecture for Adaptive
Digital Beamforming. IEEE trans. Antennas and Propagation, vol. AP-34, no.3. 1986, pp.338-
346.

(33] B Yang and J F Bdhme. "On a Parallel Implementation of the Adaptive Multichannel Least-
squares Lattice Filter". Proc. ht. Syrnp. on Signals Systems and Electronics, Erlangen, Fed. Rep.
of Germany. Sept. 1989.

60

6 Appendix
The following algorithms, written in pseudo-ALGOL. are for a narrow-band beamformer and a

single channel adaptive filter only. Two narrow-band beamformer algorithms are presented: the first al-

gorithm uses the obvious, feedforward implementation of Givens rotations using square-roots: the sec-

ond one avoids taking square-roots by calculating transformed quantities and implements the rotations

via the feedback algorithm. Both the least squares lattice and fast Kalman algorithms are given but only

using the conventional Givens rotations using square-roots. Based on the diagrammatic representations

of the algorithms and the interchangeability of the processing elements, it should be possible for the

reader to generate any of the "'missing" algorithms. In the same spirit, it should be clear how to modify

these algorithms to include such aspects as parallel weight-extraction.

The computation count down the nght-hand side of the page assumes that the signals being proc-

essed are real - although the mathematics is written assurmng complex quantities. The complexity of

division has been equated to that of square-rooting and multiplication by the exponential weighting fac-

t, r P is counted as one general purpose multiply - which may not be the case if P is chosen to be of a

i mple form such as I - 2n.Note that the algorithms are not optimised: the computational load could

be reduced by rewriting the algorithm to take advantage of intermediate quantities common to two or

more calculations: such compact forms of the algorithms are not presented here, in order that the regu-

larity of the calculation should not be obscured.

The narrow band beamformer algorithms take as inputs a p-dimensional vector of auxiliary signals

x(t) and a reference sequence y(t) and calculate the beamformer residual. The adaptive filtering algo-

nthms calculate the filter residual for a pth order system fed with a pre-windowed data sequence x(t)

and a reference sequence y(t).

Note: r, (t) is the (i.j)th component of the matrix r(t):

xt(t) is the ith component of the vector x(t).

6.1 SQ/FF Narrow-band Beamformer Algorithm

START add/ mult sqrt/

INITIALISE (all variables:= 01: subt divide

FOR t FROM I DO

LET a(t):=y(t): Y(t):= 1:

FOR i FROM I TO p DO

LET r,. (t):= , 0' [ri, i(t- 2 + Xi(t) 2 3

IF r, i(t) - 0 THEN LET c:=1: s:=0:

P3r, (t - 1) x(t)
ELSE LET c:= -r '- s:= t. II- 1 2

ENDIF:

FOR j FROM i+l TO p DO

61

LET x':= (cxj(tW- sri j(t- 1)): 1 2

r,, (t):= (cr, ,J(t -)+ s* xj(t)) 1 2

xj(t):= X'

ENDDO:

LET a':= (ca(t) - sji(t - 1)): 1 2

u.(t):= (cu,(t - 1) + s* cX(t)): 1 2

a(t): =a': y(t):=cy(t) 1
ENDDO: I i loop)

COMMENT th order filtered residual COMMENT
LET e(t, t):= (y(t)a(t)) I

ENDDO; it loop] p2+2p 2p 2+7p+l 3p
FINISH

6.2 SF/FB Narrow-band Beamformer Algorithm

START add/ mult sqrt/
INITIALISE Iall variables:= 01: subt divide
FOR t FROM I DO

LET e(t, t - 1):= y(t): 6(t):= 1:

FOR i FROM I TO p DO

LET r, i(t),=W ,,,(t - 1) +b(t) x0t =) 3 1

IF r, (t) = 0 THEN LET c:=1: s:=0:

ELSE LET c= 2 r (t -) (t)x(t)
-r1 (t) 2r (t) 2

ENDIF:

FORj FROM i+I TO p DO
LET x (t):= (xJ(t) - ri, ,(t - I)x(t)) : I 1

'i (t):- (r,, (t- 1)-x(t)s+x) I 1

END DO:
LET e(t, t - I):- (e(t, t - 1) - ui(t - I)xi(t)) : I I

Ui(t):= (ui(t -) + s* (t, t - 1)) : 1 1

6(t):= ,(t) I
END_DO: Ii loop)

COMMENT eth order filtered residual COMMENT

LET e(t, t):= (b(t)e(t, t -)) I
ENDDO: It loop) p2+2p p2+7p+l 2p

FINISH

62

6.3 SQ/FF Lattice Algorithm

START add/ mult sqrt/
INITIALISE fall variables :=01: subt divide

FOR t FROM I DO

LET cft) := x(t): b(t) x(t):

ao(t) := y(t): Yo(t) := 1.0:

FOR q FROM I TO p DO

LETcb_ j(t):- (t 2 + b t) 23

IF eb
£ (t) = 0 THEN LET cfq(t + 1): 1: sf(t + 1) 0: - -

q q qPE b _ (t- 1) Sf~~)_ob-
t .

ELSELET cq(t+ 1) b s-t- + .) b _ 1 2
E

q
() q (t)

ENDIF:
LET Afq)f

Oq q -,t-f)+qf ()(t)Otq c () W S fq tlI~ q l Wta) I

q(t) := c f(t +) l (t)-s) f (t 1)1 3
q q q I9tq-(t) := C (t +)t P 2 (- 1) f(t + 00I~t (t(t-): 1 3

yq(t) c f (t + l)yq_ (t): I

COMMENT q-th order forward prediction residual COMMENT

efQ(t, t):= -q(t- 1)afq(t):

COMMENT q-th order filtered residual COMMENT

eq(t. t) := Yq(t)Caq(t):

LETE f(t) 2 (1)) 2 +a f (t) 2 3q-I qq I
IF E

f (t) = 0 THEN LET Cb(t) := I: sbq(:= 0: -

q- q q

S1(t -)a f ,(b)
ELSE LET cb(t) := q --) S(t) := -1 2

qf (t) q t

ENDIF:
LET g (t- I) :- c (t)pb (t - 2) + s b(t)czb (t - 1); 1 3

q qb qq-i 9 q

ab(t) := cq(t)a (t - 1) - S(t) b - 2); 1 3

COMMENT q-th order backward prediction residual COMMENT
e b(t. t) "= y(t)a b(t):

END DO T7

63

COMMENT pth order filtered residual COMMENT

ep(t, t) := yp(t)ap(t): I

END DO

FINISH 613

6.4 SO/FF ORD Fast Kalman

START add/ mult sqrt/

INITIALISE (all variables:= 0[. subt divide

FOR q FROM 1 TO p DO

LET Cq:= 1.0:

ENDDO:

LET yp := 1.0: -

FOR t FROM ! DO

LET a (t)

FOR q FROM I TO p DO

LET uf(t):= Cq Uf(t - 1)+ sa fq_ (t): p 3p

atf(t) :-Cqa ._ 1(t) - sqPUfq(t - 1); p 3p

END-DO:

COMMENT pth order forward prediction residual COMMENT

e f(t. t) :- y af(t)P P P

LET f(t) P2 (E(t - 1))2+ a(t) 2 3

IF e(t) = 0 THEN LET cp+I:- 1.0: s b - 0.0: -

- 1) af(t)b+ -- Pt- -- b ._ p .
ELSELETC := - ft): sp+ (t) 2

P p
ENDIF:

LE p+ Cb ,y:ap := sb .LET P:= C P l Yp: p+i

FOR q FROM p TO I DO

LET c f (t):_ (FfE(t)) 2 + Uf (t) 2: 2pq-1 q q p

IF e f (t) = 0 THEN LET Zb := 1.0: s b 0.0:

-b ~q -b 2p(tELSE LET cq. f sq: r~---- (-

q-q

ENDIF:
LETa C b a-b -I): p 2p

LTaq-1cq q q Sq ap(

64

aqj (t): c(tYaq(Ct sq(t)iq: p 2p

ENDDO
LET a,(t) (: 0:

LET yp := P y) 2 + a +1(t) 2: 1 2 1

FOR q FROM p TO I Do

LET yqj \Cy) 2 +,aqW 2 : p 2p p

IF yq 1 0OTHEN LET Cq:l s q0: - -

yq a (t)
ELSE LET c q:= - -:~ s q qt 2p t

yq- I
T
q- I

ENDUF:

END-DO:

LET a 0 (t) : ~)
FOR qFROM I TO pDO

LTu(t) := c u(1)+s q - I p 3p -

aq (t =cqa q. - I(t) -SqoUq(t -1;p 3

ENDDO:

COMMENT p th order filtered residual COMMENT

ep(.t) := y pap(t): - I

EN D-Do

FINISH 5p4 2p7S+-3

65

INTENTIONALLY BLANK

.

REPORT DOCUMENTATION PAGE DRIC Refrence Nunter (it known)

OveniU nemell deselkallon of ~ UNCLASSIFIED-............................
(Aa tw se posete mis ~he U*oid ocift only undamlled Information. N k Is neomesmy to ei to dinsfls Mnoul~.te field Coered
imustbe nwb to idlf the dsaulficion eg (R). (C) or (S).
Origiators RsekrencefRtWu No.MntYe

MEMO 4562 J JANUARY 1992
Odlrtor Nam and Loon

RSRE, St Andrews Road
Malvern, Worcs WR14 3PS

Monrin Agency Narne and Locaton

OR DECOMPOSITION BASED ALGORITHMS AND ARCHITECTURES
FOR LEAST-SQUARES ADAPTIVE FILTERING

Report So-*t Clasaffication Tite Clasaifistlon (U, R, Cor S)
UNCLASSIFIED U

Foreign Language T111e (in the cas of tanslstlns)

Conference Decie

In this memorandum we show how the method of OR decomposition (ORD) may be applied to the
adaptive fitering and beamforming problems. OR decomposition is a form of orthogonal triangularisa-
lion which is partlarlny useful in least squares computations and forms the basis of some very stable
numerical algorithms. When applied to the problem of narrowband adaptive beamforming where the
data matrix, in general, has no special structure, this technique leads to an architecture which can carry
out the required computations in parallel using a triangular array of relatively simple processing
elements.

The problem of an adaptive time series filter is also considered. Here t he data vectors exhibit a simple
time-shift invariance and the corresponding data matrix is of Toeplitz structure. In this case, the
triangular processor array is known to be very inefficient. Instead, it is shown how the Toeplitz structure
may be used to reduce the computational complexity of the OR decomposition technique. The resulting
orthogonal least squares lattice and 'fast Kalman" algorithms may be implemented using far fewer
processing elements. These *fast" OR D algorithms are very similar to the more conventional ones but.
in general, are found to have superior numerical properties.

AeetClaseflomilon (u,R,C or S)

U

OlfiAun Stwerint (IErft any Uqifos an the dwbdoe of Oni dooajnwt)

UNLIMITED

INTENTIONALLY BLANK

